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This paper studies a parametrized family of familiar generalized Baker maps, viewed as simple models of
time-reversible evolution. Mapping the unit square onto itself, the maps are partly contracting and partly
expanding, but they preserve the global measure of the definition domain. They possess periodic orbits of any
period, and all maps of the set have attractors with well defined structure. The explicit construction of the
attractors is described and their structure is studied in detail. There is a precise sense in which one can speak
about the absolute age of a state, regardless of whether the latter is applied to a single point, a set of points, or
a distribution function. One can then view the whole trajectory as a set of past, present, and future states. This
viewpoint is then applied to show that it is impossible to definea priori states with very large “negative age.”
Such states can be defined onlya posteriori. This gives precise sense to irreversibility—or the “arrow of
time”—in these time-reversible maps, and is suggested as an explanation of the second law of thermodynamics
also for some realistic physical systems.
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I. INTRODUCTION

This paper is devoted to an analysis of one aspect of the
second law of thermodynamics, namely its statement about
irreversibility. However, I am not going toproveessentially
new facts concerning realistic physical systems. What I ac-
tually want to do is toillustrate the origin of the irreversible
behavior of time-reversible systems using an extremely
simple model. The reason for such an approach is that, in my
view, the second lawsat least in its most general formula-
tionsd does not formulate newfacts about dynamical sys-
tems, it just describes their properties in a new form—that is
why it is being derived from the underlying dynamics. One
could say that the problems usually associated with substan-
tiation of this law are not so much of a physical as of a
conceptual nature. In such a context it may be acceptable to
rely on demonstrations instead of proofs, since the topic is
more a question of semantics and interpretation.

Microscopic laws of molecular dynamics are invariant
with respect to the time reversal: only the momenta change
their signs upon the transformationt→−t. This implies that
if these laws allow some evolution of a system, they allow
also an evolution in which the system passes through the
same spatial configurations as the original ones but in the
reversed ordersand with reversed velocitiesd. If the same
systems are viewed macroscopically, they evolve, on the
contrary, in one direction only: they demonstrate irreversibil-
ity which is formulated in the second law. According to the
latter, only evolution leading to growth or preservation of
disorder is observable, or in other words, there is an arrow of
time. This conceptual asymmetry represents a fundamental
problem, called the problem of irreversibility—known for
more than a century—which does not seem to be completely
solved up to the present time.

There is a plethora of theories trying to explain the origin
of macroscopic irreversibility. The approaches can be

roughly subdivided into those treating ensemblessfor an
overview, see, e.g.,f1g and references thereind and the others
studying individual systemsssee, e.g.,f2gd.

In isolated systems, the irreversibility is usually being re-
duced to asymmetry in possibilities to prepare initial states
which would evolve to equilibrium as compared to those
evolving away from itf3,4g. In open systems, the classical
approach is to view the environment as a source of random
perturbationsf5,6g, thus actually substituting deterministic
systems by stochastic ones. In such a way, however, the most
appealing aspect of the problem—the reconciliation of mi-
croscopic reversibility with macroscopic irreversibility—is
being lost.

Recently, a new promising approach to solution of the
problem has been undertaken, studying, among other things,
the simple model called the rotated Baker mapf7g, defined
on the unit square in the following way:

Brsx,yd = Hs2x/3,3yd for y , 1/3

sx/3 + 2/3,3y/2 − 1/2d for othery.
J s1d

This model generalizes the well-known “classical” Baker
map,

Csx,yd = Hs2x,y/2d for 0 ø x ø 1/2

s2x − 1,y/2 + 1/2d for otherx,
J s2d

and has many interesting properties.
In this context, we will be interested in further generali-

zation of Eq.s1d, which represents a very simple model en-
abling us to demonstrate many features of interrelation be-
tween reversibility and irreversibility.

In the following discussion, we will be frequently encoun-
tering the notions of measure and dimension, so that I find it
meaningful here to give a brief description of what is meant
by them.

Avoiding the use of excessively technical language, we
can say thatmeasurem on Rn is a set function assigning a
non-negative number to any subset ofRn in such a way that*Electronic address: Juraj.Kumicak@tuke.sk
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the measure of the empty set is zero, the measure of a subset
A,B is msAdømsBd, and the measure of the union of sub-
sets is less than or equal to the sum of the measuressthe
strict equality holding only in the case of disjoint subsetsd.
This notion is a generalization of that of area or volume and
it frequently reduces to it.

A specific kind of measure is thedimensionof a set,
which is again a generalization of our intuitive notion con-
cerning physicalstopologicald dimension. There are many
ways to define and calculate it, leading to different values.
The standard set of dimensionsf8g is based on partitioning
the phase space into a finite numberNsed of disjoint e cells
sboxesd and considering the probabilitypised sthe so-called
natural measured of finding points of the set in the boxi. Of
course, the probability has to be normalized so that

o
i=1

Nsed

pised = 1.

The dimension is then calculated, for any integersù0, ac-
cording to the formula

Ds =
1

s− 1
lim
e→0

ln Iss,ed
ln e

, s3d

where

Iss,ed ; o
i=1

Nsed

pi
s.

Specifically, fors→0 we obtain the Hausdorffsor box-
countingd dimension

D0 = − lim
e→0

lnfNsedg
ln e

, s4d

and fors→1 the information dimension

D1 = lim
e→0

oi=1

Nsed
pi ln pi

ln e
, s5d

which is commonly used to describe basic properties of frac-
tals. In effect, the information dimension of a set of points
gives crude information about its inhomogeneityshence the
named.

It may be worth mentioning that fors→2 we obtain the
correlation dimension. One can also prove under rather gen-
eral conditions thatDqøDr for q, r.

II. DEFINITIONS OF REVERSIBILITY

To introduce shortly the notion ofsirdreversibility, con-
sider a continuous dynamical systemsa flowd defined in a
phase spaceG and described by differential equations. IfSt
denotes the evolution operator, taking the present stateg0
PG to the future one,gt=Stg0, then the present state can be
retraced into the past as well. If this can be achieved by
applying a well-defined operatorS−t soriginating in differen-
tial equationsd, i.e., S−tg0=g−t, then reversibility of the dy-
namics means thatS−t is defined. However, the inverse op-

erator S−t may differ significantly from St, so that the
dynamics of the inverse evolution may be different from that
of the forward one. If, however,S−t andSt differ just in the
sign of the parametert, such reversibility reduces in a func-
tional analytic approach to the statement that the family of
operatorshStj represents a group, defined by a generator, the
latter being closely related to the differential equations de-
scribing the dynamicsf3g.

Another definition is not as concerned with changing the
direction of evolution as it is with the possibility to “reverse”
the final stategt to a reversed oneTgt stypically by reversing
the directions of all momentad and with application ofSt to
the latter. The dynamics is then said to be time-reversible if

StTgt = Tg0 for all t . 0. s6d

The question about the existence ofS−t is not so important
here and therefore such an approach seems to be more gen-
eral than the previous one.

Obviously, the properties of the reversal operatorT will
depend onSt in general. We expect to have different opera-
tors T for different evolution operatorsSt. Therefore,T can
be any transformation which transforms a final state of evo-
lution into the initial state for the same evolution—fulfilling,
of course, the propertys6d. Every such transformation will be
evidently idempotent, i.e.,T2= I, and thereforeT−1=T.

In real physical systems, the operatorT has the evident
meaning of the change of momenta:pi →−pi. The fact that
for time-reversible systems we haveStTgt=Tg0, is just the
consequenceof the physical laws there. If, however, we want
to speak about reversibility of systems in which there is no
analogy to momenta—as is, e.g., the case of two-
dimensional maps which will interest us in the
following—we have to accept this consequence as adefini-
tion and denote as reversible all mapsM for which there
exists an operatorT, making the diagram in Fig. 1 commu-
tative, i.e., such thatMnTgn=Tg0, or more generally

MkTgn = Tgn−k. s7d

The operatorT is defined here not by the physical essence
of M, but just by the latter requirement, and we have tofind
it. If it does not exist, the mapM is not reversible. For
reversibleM, the inverse mapM−1 will then be, evidently,
M−1=T−1MT=TMT.

III. GENERALIZED BAKER MAP

We will generalize the classical maps2d to what may be
called the “generalized” Baker mapBw sGBM for shortd, in a
way similar to the one described inf9g and denoted there as

FIG. 1. Commutativity as the defining property of
reversibility.
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the “slightly generalized Baker’s transformation.” The map
is defined f25g for any w.1 and is acting on pointsg
;sx,yd of the unit squareE=f0,1g3 f0,1g. For the points
0øxø sw−1d /w, its action is

Bwsx,yd = S w

w − 1
x,

y

w
D s8d

and for the remaining onessw−1d /w,xø1,

Bwsx,yd = Swsx − 1d + 1,
w − 1

w
y +

1

w
D . s9d

Later it will be advantageous to have the above definitions
rewritten in the form

Bwsx,yd = HsLxx,Lyyd for 0 ø x ø sw − 1d/w
sRxx,Ryyd for sw − 1d/w , x ø 1,

J s10d

with the evident expressions for the “left” and “right” opera-
tors: Lxx=wx/ sw−1d, Rxx=wx−w+1, Lyy=y/w, and Ryy
=swy−y+1d /w.

Bw is a piecewise linear mappingssee Fig. 2d behaving
differently to the left and to the right of the vertical linex
=sw−1d /w, which we will call thedividing line. One can
easily check that in order for the map to be time-reversible,
i.e., fulfill the time-reversal conditionBw

nTgn=Tg0, one has
to define the reversal operatorT as “rotation” aroundsor
reflection with respect tod the second diagonaly=1−x, i.e.,
as

Tsx,yd = s1 − y,1 −xd. s11d

The map can be analyzed using modern computer algebra
systems, which enable us to compute the action ofBw with
absolute precision. One can then observe time-reversed evo-
lution on a computer screen, and analyze the reversibility.
However, to prevent rounding errors, such computations re-
quire using rational coordinates and rationalw, instead of
finite-precision decimal valuesf10g.

All simulations described in the paper were performed
under the above conditions. The analysis was further simpli-
fied by restrictingw to integers. The latter has no effect on
the results presented in the paper, so that in the following I
will mostly suppose integer values ofw.

The expansions caused byBw in the x direction and con-
tractions in they direction are characterized by local loga-
rithmic rateslx and ly,

lx = ln
]Bwsx,yd

]x
and ly = ln

]Bwsx,yd
]y

. s12d

Since the action ofBw is different for points lying to the left
and to the right of the dividing line, we will have two rates in
the x direction,

lx
L = ln

w

w − 1
and lx

Rswd = ln w s13d

and two in they direction,

ly
L = ln

1

w
and ly

Rswd = ln
w − 1

w
. s14d

The mapBw represents probably the simplest possible
model exhibiting “microscopic” reversibility and “macro-
scopic” irreversibility, which strongly motivates its study as
that of an example illustrating the foundations of irreversible
thermodynamics, see, e.g.,f11g. To start with, we mention
that all the points ofE can be subdivided into fixed points,
cyclessperiodic orbitsd, and attractors, as well as points ap-
proaching those sets. Let us consider each of the sets sepa-
rately.

A. Fixed points

The mapBw possesses two hyperbolic fixed points,s0, 0d
and s1, 1d. The local stable manifoldWloc

s f12g for the point
s1, 1d contains any subset of the vertical linex=1 in E, since
Bw

ng0 approachess1, 1d for g0=s1,y0d with anyy0 within this
subset. Similarly, the local unstable manifold for the points0,
0d contains any subset of the horizontal liney=0 in E swhich
we shall denote as theprimary line in view of its later roled
contained ins0,w−1/wd, becauseBw

ng0 departs froms0, 0d
for g0=sx0,0d with anyx0 within this subset. We will discuss
corresponding global manifoldsWs andWu later.

B. Cycles

The generalized Baker map appears to have a rich struc-
ture of periodic orbits, or cycles. Consider a pointg=sx,yd.
Any combination of operatorsLx,Rx acting consecutively on
x will yield an expression linear inx, so that setting it equal
to x will give us an equation with a unique solution. As an
example, the equationLxRxLxx=x leads to

w3x − wsw − 1d2

sw − 1d2 = x,

with the unique solution

x1 =
wsw − 1d2

w3 − sw − 1d2 . s15d

We can find the solution for the second coordinatey1 simi-
larly, using the equationLyRyLyy=y,

FIG. 2. Bw transforms the filled rectangle with the areasw
−1d /w into the rectangle with the area 1/w. Similarly, the comple-
mentary empty rectangle with the area 1/w is transformed into the
one with the areasw−1d /w.
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y1 =
w

w3 − w + 1
. s16d

The pointg1=sx1,y1d is then one of the points of the three-
cycle sthe remaining two points can be calculated by two
applications ofBwd. Remembering that the operatorLx sRxd
acts on the point to the leftsrightd of the dividing line, we see
that the prescribed succession of operatorsswe can call it the
operator structureof a cycled will create a cycle which will
visit corresponding sides of the dividing line.

There are only two structures which do not generate
cycles, namelyLn andRn, leading to stationary pointss0, 0d
or s1, 1d, respectively. But for any other structure there exists
precisely one cycle visiting both sides of the dividing line in
the given order. This shows that there is a one-to-one corre-
spondence between thex coordinate ofarbitrary point on the
cycle and the sequence of positions of remaining points with
respect to the dividing line. Therefore, thex coordinate of a
point of the cycle “encodes” the sequence of operatorsLx
and Rx soperator structured, and vice versa, in a way very
similar to that of the Bernoulli shiftf8g. This is related to
what is usually referred to as “symbolic dynamics”f11g.

The set of all possible cycles has interesting structure and
deserves a detailed study. Here I just mention some relevant
results, starting with the remark that due to contractivity of
Bw in they direction, every cycle is a limit set for a subset of
points inE.

The number of cycles grows exponentially with the cycle
length. There are 2p possible combinations of two operators
Lx and Rx, having the lengthp. Two of them correspond to
fixed points, and in the case in whichp is not prime, some of
the combinationssdenote their numberrd may be further
reduced to ones corresponding to shorter periods. Everyp of
the remaining 2p−r −2 combinations represents cyclic per-
mutations, so that they correspond to the same cycle. The
total number of different cycles of the lengthp is then s2p

−r −2d /p.
For any value ofw we have, consequently, an infinite

number of all possible cycles. The cycles created by the
same sequences ofLx and Rx are topologically independent
of w, and with growingw they are just scaled to smaller
dimensionssthe denominators are growingd and translated
towards the points1, 0d. This implies that there is the same
number of cycles for anyw. In the case ofw=2, every point
with an odd denominator of thex coordinate belongs to some
cycle. Forw.2, however, we do not have such a simple rule
due to the above-mentioned scaling.

Consider now a period with very largep. Only a very
small proportion out of 2p sequences of corresponding op-
eratorsLx andRx will be ordered in any sense—the majority
will look like random sequences. The orbits they will gener-
ate will therefore be indistinguishable from random sets of
points on the trajectories.

It is evident that the set of points belonging to cycles, and
of points approaching them, is of zero measure inE and
consequently the behavior of cycles is not what we could
observe in GBM frequently.

We now come to the most important subset ofE, which
is—as we shall see—dense inE and therefore the behavior

of its points represents typical properties of GBM.

C. Attractors and their properties

Averaging the logarithmic expansion ratess13d and s14d
over typical trajectories inE sseef13gd, one obtains what is
usually called Lyapunov, or time-averaged, exponents—the
positive one

l1 =
w − 1

w
ln

w

w − 1
+

1

w
ln w =

1

w
ln

ww

sw − 1dw−1 s17d

and the negative one

l2 =
w − 1

w
ln

1

w
+

1

w
ln

w − 1

w
=

1

w
ln

w − 1

ww . s18d

From the above expressions one sees that with growingw
.2, both exponents are monotonously decreasing, and their
limit behavior forw→` is l1swd→0 andl2swd→−`.

The existence of the positive Lyapunov exponent suggests
that one should expect chaotic behavior of the iterates of
Bw

ng0 sfor almost everyg0PEd, and the existence of the
negative one the existence of asstranged attractorf8g. Both
are observed when one iteratesBw beginning with almost any
starting point—see Fig. 3.

It follows from previous remarks that exceptions to this
general statement include points ofWloc

s , approaching the
hyperbolic fixed points1, 1d, and points belonging to cycles,
or approaching them.

One can prove that the attractor consists of an infinite set
of lines parallel to thex coordinate, see Fig. 4, and can be
generated by successive applications ofBw to the primary
line. The construction is based on the iterated function sys-
tem, seef10g. It is well known that in the case ofl1+l2
,0, the attractor is asmultidfractal object.

From the definition of an unstable manifold, it follows
that the points lying exactly on the attractorsi.e., points gen-
erated by the described constructiond represent the global

FIG. 3. Iteration of the points95/100,95/100d by the action of
B3 discloses a distinct attractor with clearly visible self-similarity. A
total of 10 000 iterations are shown.
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unstable manifoldWu for the points0, 0d. In this sense, the
latter represents the source for the attractor.

The attractor is markedly inhomogeneoussstranged for
greater values ofw. With growing y, its density decreases
sfor w.2, but increases forw,2 if we permit rational non-
integer values forwd. With decreasingw.2, the inhomoge-
neity is less and less pronounced, until at last, forw=2, the
limit object becomes the set of equidistant horizontal lines.
The latter specific case will be treated separately in Sec. IX.

As with any attractor, one would like to know its dimen-
sionsDsswd, sù0. The Hausdorff dimensions4d is evidently
D0swd=2 ssee, e.g.,f14gd. The information dimension is cal-
culated with the help of formulas5d, taking into account that
one can use, in place of probability, the density of iterates of
a typical single pointf26g. Repeating the calculations of
Hoover and Poschf13g, but for generalw, one arrives at the
following expression for the information dimensions5d:

D1swd = 1 −
lnfwwsw − 1d1−wg
lnfsw − 1dw−wg

. s19d

Table I gives the dimension for a few values ofw, and the
graph in Fig. 5 enables us to see the overall dependence of
D1swd on w. Evidently, one can obtain any value ofD1swd
from the interval 2ùD1swd.1, by controllingw. SinceD1

can be viewed as the measure of attractor inhomogeneity, the
approach of the dimension to the value of 1, with growingw,
suggests that the iterated points tend to accumulatescon-
densed on smaller subsets ofE.

It can be provedf15g that every attractor generated by an
iterated function system is the closure of its periodic points.
This suggests that the evolution generated byBw may show
Poincaré recurrences.

IV. REPELLORS AND SYMMETRY OF EVOLUTION

Since our main preoccupation is the study of interrelation
between reversibility and irreversibility, we cannot be inter-
ested only in the “future” of a state defined by an initial point
g0, i.e., in the trajectorybeginningin this point, but we have
to consider its “past” as well, viz. the trajectoryendingthere.
Here we will therefore try to find out what is possible to tell
about thewhole trajectory going through a given pointg0.

Repeated application ofBw to arbitrary pointg0 generates
a sequence offuture points hg1,g2, . . . ,gn−1,gnj, wheregk

=Bw
k g0. Let us denote byg−k a point from which the pointg0

ensued after the application of the mapBw
k . Then thepastof

the point g0 will be represented by the sequence
hg−n,g−n+1, . . . ,g−2,g−1j. Evidently, g−k=TBkTg0, and we
will call the inverted sequencehg−1,g−2, . . . ,g−n+1,g−nj the
backward iteration of the stateg0. The fact that it can be
obtained also by repeated application ofBw

−1 to g0 is irrel-
evant here.

It is clear thatTg0 is arbitrarysor randomd in exactly the
same sense asg0, so that the iteratesBw

k Tg0 will approach the
attractor as well. This has the following consequences. Since
Bw is contracting in they direction, the distance between any
two points, having exactly the samex coordinate, will
quickly decrease under the action ofBw

k , and the properties of

FIG. 4. Iterative generation of the attractor ofBw sw=5d. First,
Bw is applied to the line segmenty=0 sprimary lined. We call the
resulting two linessincluding the primary lined the first generation.
Applying Bw repeatedly to all lines of the previous generation, we
obtain 2n prefractal lines aftern iterations. New generations are
illustrated by gradually shorter lines.

TABLE I. Information dimension of the attractor ofBw for some values of parameterw.

w 2 3 4 5 10 100 1000

D1swd 2.000 1.734 1.506 1.376 1.156 1.012 1.001

FIG. 5. Functional dependence of information dimensionD1swd
on the value of parameterw. One sees that the dimension will
approach 1 with infinite growth ofw. The behavior for 1,w,2
does not represent anything new since for these values the unit
squareE is just contracted in the direction of growingy.

IRREVERSIBILITY IN A SIMPLE REVERSIBLE MODEL PHYSICAL REVIEW E71, 016115s2005d

016115-5



the future trajectory will be determined essentially by thex
coordinate of the initial point. The reversalT interchanges
the components of coordinates, so that during the backward
iteration they coordinate of the original point will similarly
determine the past trajectory. We can thus say that the infor-
mation about theglobal aspects of the future is contained in
the x coordinate ofg0 and the information about the past in
its y coordinate. We will express this fact by writing sym-
bolically g=sxfut ,ypastd.

This, however, means that the past of a point will ap-
proach sunder backward iterationd an object symmetrical
with respect to the attractor. As this object is composed of
vertical lines, every point in its vicinity will move away from
it under forward iteration, since the differences inx coordi-
nates are growing with iterations. That is why it is being
called therepellor.

We have thus come to an important result:an orbit going
through arbitrarily chosen pointg0 has its past close to the
repellor, and its future close to the attractor. In other words,
a typical trajectory generated by the action ofBw departssin
the pastd from the repellor and approachessin the futured the
attractor. Such unidirectional behavior is sometimes charac-
terized as demonstrating the existence of the “arrow of time”
and here it is the direct consequence of the dynamics defined
by Bw. The time reversal of such a trajectory will again be
going from the repellor to the attractor, sinceT transforms
future points into the past onessand attractors into repellorsd
andvice versa. The time reversal is thus not able to change
this global aspect of evolution.

This state of affairs can best be seen when we choose a
point d0 lying exactly on the second diagonal, i.e., a point
d0=sx0,1−x0d. Such an initial point remains unchanged upon
reversal and therefore its past will be the reversal of its fu-
ture: past and future parts of the trajectory will be exactly
symmetric with respect to the diagonal,d−k=Tdk, see Fig. 6.
Or still in other words, we obtain the past part of the trajec-
tory, in this specific case, by reversing its future.

Considering the explicit construction of the attractor, de-
scribed in the previous section, we immediately see that the

points lying exactly on the repellor represent the global
stable manifoldWs for the point s1, 1d. In this sense, the
latter represents the sink of the repellor.

Returning to cycles, we discover an interesting property,
applying to anyw. There are trajectories which unwind from
a p1 cycle in the past and approach ap2 cycle in the future;
see the example in Fig. 7. In my view, such behavior illus-
trates best the discussed difference between the past and the
future, since it demonstrates that there exist two different
limits in the behavior ofBw, separated by intermediate states.
Let us mention in passing that the period of the future and
the past cycle is determined—in accordance with the general
rule expressed above symbolically asg=sxfut ,ypastd—by de-
nominators of the coordinatesx andy, respectively.

Bw can be viewed as mimicking the behavior of a thermo-
dynamic systemsa nonequilibrium thermostatted one forw
Þ2, and an isolated one forw=2d and therefore it could be
employed to explain the origin of irreversibility. In this way,
one is led to the tentative conclusion that the evolution of
some physically relevant systems, sharing common proper-
ties with Bw, is such that their statesapproach an attractor
and in the past they depart from a repellor. This being the
case, we arrive at an alternative explanation of the interrela-
tion between reversibility and irreversibility, avoiding some
paradoxes usually derived from the second law. For example,
the question of why we do not observe the evolution going in
the direction from attractor to repellor now becomes mean-
ingless, because such a possibility is ruled out by the sys-
tem’s dynamics. The problem is instead being shifted to the
question of why we encounter an approach to the attractor
but not the departure from the repellor—both proceeding in
one and the same direction of time. In other words, the ques-
tion is, why do we observe only one part of thefull sand in
principle possibled evolutionary trajectory? The next sections
are devoted to tackling the problem of irreversibility in this
alternative formulation.

FIG. 6. Symmetry between the past and the future of the trajec-
tory sfor w=5/2d with the initial point d0=s1/10,9/10d—denoted
by a box—lying exactly on the diagonal.

FIG. 7. Trajectory unwinding from a 6-cycle in the past and
approaching a 4-cycle in the futuresfor w=3d, “generated” by the
initial point s16/73,63/103d, denoted by a box.
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V. AGE OF STATES

Since the typicalfull phase trajectorysconsidered un-
bounded both in the future and in the pastd consists of points
moving from the past repellor to the future attractor, it is
quite natural to call the points between the past and the fu-
ture thepresentones. This leads us to consider the possibility
of introducing an “age” that could be applied along the tra-
jectory.

Looking at the definitions8d and s9d of Bw with rational
w, we see that if we choose arbitrary pointg0 with rational
coordinates, the coordinates ofgn;Bw

ng0 will be rational
too, and with growingn they will be represented as fractions
of growing integerssexcept the cases of periodic orbitsd—
they will become more “complex.” The same applies to
backward iterationg−k;TBkTg0. Since, by definition, the
denominator of any coordinate inE is not less than its nu-
merator, we can assess the “complexity” or “simplicity” of
coordinates by the value of denominators: smaller denomi-
nators will mean “simpler” coordinates.

Expressing an arbitrary point on the trajectorysusing frac-
tional expressions for rational coordinatesd as g=sx,yd
;sp/q,r /sd, we realize that in thesdistantd future the map-
ping of the y coordinates of points is dominated byy
→y/w, whereas that of thex coordinates is dominated by
x→x/ sw−1d. This means that they coordinates will have
greater denominators than thex coordinatesss.qd, whereas
in the sdistantd past it will be the opposite, since the role of
coordinates becomes exchanged. We could thus base the no-
tion of “age” on the differences−q. For future points, the
latter will be positive; for the past ones, negative. However,
except for the points lying exactly on the diagonalssee Fig.
6d, the presence will not be sharp: we will not observe mo-
notonous behavior in its neighborhood and different trajecto-
ries may have present states of different ages. This is espe-
cially true if we choosepresent points withq@s, making
them seem to be past in such a way.

To illustrate the situation, consider the following typical
subsequence of valuess−q for w=3 andk=−8, . . . ,8, with
initial point g0=s1/4,3/5d:

. . .,− 2027,− 649,− 203,− 61,− 17,− 8,− 2,1,1,

− 3,− 1,13,103,341,1151,3517,10 679, . . . .

The subsequence is centered around the value 1, denoted in
bold, corresponding to the initial pointg0. The differences
−q lacks the most important aspect of age, namely its linear-
ity. We can obtain the latter by defining the age as

t = sgnss− qdlogwsus− qud s20d

and skipping eventualsand rared zeros for which this expres-
sion is not defined. In such a way, we get a really very
precise approximation to linear age—a result which can be
understood by noticing thatBw alwaysmapss→ws, whereas
q either remains unchanged orq→ sw−1dq. Then forgk we
have on averages−q<wk−sw−1dk−1 for k.0. The logw of
the latter approaches, with growingk, the value ofk+const
with very high precision. The above samplessubdsequence is
then transformed into the following one:

. . .,− 6.93,− 5.89,− 4.84,− 3.74,− 2.58,− 1.89,− .63,0,

0,− 1,0,2.33,4.21,5.30,6.41,7.43,8.44, . . .

which approaches, with growingk, equidistant values of
“age,” separated by exactly unit steps. One has to note that
corresponding points on different trajectories can have
slightly different ages.

These reasonings demonstrate that in a microscopically
described system of GBM, the age of any point can be found
in an unambiguous way and with reasonable precision; see
Fig 8. It will increase in equal steps from past to future—
except the small neighborhood of the “present” state. This
age isabsolutein the sense that it does depend only on the
distance from the present, i.e., on the number of iteration
steps. This is due to the fact that coordinates of points con-
tain “traces” of their evolution, which enable us, at least in
principle, to recover the iteration indexk from the coordi-
nates of arbitrary point. It is appropriate to stress here that
the case of the classical Baker mapsw=2d is no exception to
this general rule.

The described approach to age might seem extremely ar-
tificial, but it can be viewed, nevertheless, as representing
what may be called “microscopic” age. Of course, one
should not overemphasize this model description, but neither
should it be underestimated. In my view, it demonstrates—
together with the above-mentioned behavior of cycles, illus-
trated in Fig. 7—that there is, at leastqualitatively, a differ-
ence between past and future already at the microscopic
level. This then implies the existence of the property of the
system, which I would callmicroscopic irreversibility.

If we now consider the evolution of a set ofN points
under the action ofBw, the above reasonings will apply to

FIG. 8. Dependence of “absolute age”t on iteration indexk.
Although one of the worst cases, with initial point
s50 001/100 000,11/30d, has been chosen here intentionally, the
age t differs from k by less than 10. This situation is far from
typical, because in a random choice of a point it is not probable to
obtain such a great difference in the precision of its two coordi-
nates. The typical behavior is characterized, contrary to the depicted
one, by two parallels close totskd=k, exhibiting a sudden jump
aroundk=0.
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any point of the set. We could therefore—at least in
principle—define in any evolutionary trajectory of the set the
“age” as the average of ages of all individual points. The
“present” state would then be the one with thesaveragedd age
closest to zero.

However, looking at the set without the knowledge of the
coordinates of individual points, it is possible to know its
“age” also by observing its shape. Specifically, in the case of
a subset ofE having a simple boundaryse.g., the case of
points lying within a small squared, the Bw—causing the
growth of the fractional expression of coordinates of all the
points—will cause also the “distortion” of the boundary. This
then means that such distortion is commensurate with the age
of the set. To make this idea more definite, we turn to the
distribution functions onE, giving the densitysof probabil-
ityd of points inE.

The map defined byBw on E will translate in a straight-
forward way into the evolution of distribution functions hav-
ing E as their support. The distribution function, constant on
a compact subset ofE, will in the forward evolution ap-
proach a function independent ofx, and in the backward one,
independent ofy ssee Fig. 9d. But even general distribution
functions will very quickly approach functions almost inde-
pendent ofx, or y. That is why one can characterize, with
sufficient precision, thefuture limit behavior of any distribu-

tion function with the help of the functionfsx0,yd, represent-
ing a section acrossfsx,yd by a plane perpendicular to thex
axis, going through arbitrary pointx0, see Fig. 10. For such a
function of one variable, a variation on the unit interval is
defined as the supremum,

Vysfd = supo
j=1

m

ufsx0,yjd − fsx0,yj−1du, s21d

taken over all possible dissections of the interval bym.1
points. We can regard this expression as an acceptable ap-
proximation of the variation of the distribution function
along they axis.

In quite a similar way, one can characterize thepast limit
behavior of any distribution function with the help of the
variationVxsfd of the functionfsx,y0d, representing a section
going through arbitrary pointy0. The difference Vysfd
−Vxsfd of variations alongy andx will then grow steadily for
n from −` to +`, and we can use it to estimate the “age” of
the state, similarly as we used the difference of denominators
in the case of a single point.

This then gives us the general picture of the evolution of
a distribution function under the action of the mapBw. The
absolute value of its variation will grow indefinitely forunu
→`, attaining somewhere in between its minimum. Choos-
ing one of the states having low variation for the “present”
state and denoting the corresponding iteration index byk
=0, we will again introduce what may be called the “age”k
of the system in question. We could also go a bit further and
make this age linear by taking the logarithm of the difference
of variations, similarly as in the case of a single point. Such
an age would then be mathematically well defined every-
where, with the possible exception of the neighborhood of
the “initial” distribution function.

Let us note in passing that the distribution function that
evolved from the standard “testing” functionf0sx,yd;1
will have the future maximum valuessfor w.2d close to the
line y=0 and the minimum ones close to the liney=1. After

FIG. 9. Two states in the evolution of a distribution function
sunder the mappingB3d, the present state of which is defined as
constant on the unit square.

FIG. 10. Section across the distribution functionf5;B3
5f0,

with the initial functionf0sx,yd;1, by a plane perpendicular to the
x axis. The maximum value isf5s0,yd=32.
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n iterations, the values will besw−1dn andsw−1d−n, respec-
tively. This can be readily seen by taking into account that
the areasw−1d /w to the left of the dividing line is contracted
by the action ofBw to the area 1/w, i.e., by the factor ofw
−1. In a similar way, one will understand the behavior of the
minimum.

The ratio of the maximum to the minimum value is then
sw−1d2n, which becomes—forw.2—a huge number after
just a few iterations. This illustrates very well the growing
inhomogeneity of the distribution functions under the action
of GBM.

VI. THE PROBLEM OF IRREVERSIBILITY

Having introduced the notion ofabsolute agein a way
formally different from the one used by the Brussels school
f16,17g, but conceptually—as it seems—rather close to it, we
are ready to explain the apparent contradiction between mi-
croscopic reversibility and macroscopic irreversibility of
generalized Baker maps, or in other words, to explain the
essence of the second law of thermodynamics as applied to
this simple model.

The so-called “problem of irreversibility” is usually ex-
pressed in two distinct formulations: one concerns the evo-
lution of a state prepared by an experimenter, the other ap-
plies to the observation of a system without any question
about its origin, i.e., of a system with an unknown past. We
are thus facing two questionssboth equivalent to the
Loschmidt objectiond which are being posed since the first
explanation of the second law by Boltzmann in 1872: if both
directions of evolution are microscopically equally possible,
then sad why are we not able topreparestates which would
evolve in a direction “prohibited” by this law, andsbd why do
we neverobservesuch evolution in systems with an un-
known past? In the language of the absolute age, these ques-
tions reduce to the following ones: why are we not able to
prepare, nor to observe, states which belong to thedistant
paston the evolutionary trajectory of the system under con-
sideration?

We will treat the two questions separately, because the
explanations will turn out to be different for the two cases.
We will also treat separately two different approaches, cor-
responding to microscopic and macroscopic descriptions.

VII. MICROSCOPIC IRREVERSIBILITY

A. Irreversibility in the evolution of a single point

We have shown that if we choose a pointswith rational
coordinatesd in E in any way, the coordinates of its future
and past iterations will be almost alwayssi.e., with the ex-
ception of zero measure of pointsd more complex than the
present ones. The claim that we can prepare only absolutely
“present” points will then become actually a self-evidenttau-
tology, stating that we can prepare “simple” coordinates
more easily than the “complex” ones. This tautology, how-
ever, expresses exactly the essence of the problem. If we
would ask why it is not possible to prepare an “old” point,
the coordinates of which would become simpler in the fu-
ture, we could first of all point out that if that were even

possible in principle, such simplification would last only for
a finite number of iterations—until the coordinates would
become relatively simple sthe state would become
“present”d. However, to prepareab initio a point close to the
repellor, i.e., a point with specific and thus very complicated
coordinates, means to prepare an exceptional point, and this
is essentially more difficult than to generate a point at ran-
dom. I propose to call this state of affairs, in the given con-
text, microscopic irreversibility.

It is evidently possible to prepare such a point, even nu-
merically, only by choosing a pointg0, letting it evolve to the
point Bw

k g0, and at last inverting the latter. The pointTBw
k g0,

having the age of −k iterations, would then approach, under
the action ofBw, the pointTg0 and the coordinates of itsk
iterations would be simplified. But it is not possible to find a
general construction nor formula defining a set of such “old”
points.

From this point of view, the microscopic irreversibility is
related to substantially different requirements for preparation
of the present and past states, respectively. Evolution leaves
“traces” on the coordinates of the evolved point, and inverse
evolution would require us, even in the case of a single point,
to reconstruct precisely its whole history. But nothing similar
is being required to prepare the present state. This crucial
asymmetry lies, in my opinion, at the root of the explanation
of irreversibility f27g. One should not, however, forget that
this situation is the result of chaotic properties of the evolu-
tion induced by the mapBw. If the map did not lead to
chaotic dynamics, there would be no tautology; nothing
would be self-evident in this sense.

We assumed that phase points have rational coordinates.
The considerations of the last two paragraphs hold, however,
equally for irrational coordinates. In particular, the fact re-
mains that inversion of evolution would require us to recover
exactly its whole history. In this sense, the argument applies
to any coordinates.

Here we come to a variance with a traditional view of
irreversibility as formulated, e.g., by Bricmontf18g: “All the
familiar examples of irreversible behavior involve systems
with a large number of particlessdegrees of freedomd. If one
were to make a movie of the motion of one molecule, the
backward movie would look completely natural.” Certainly,
playing back the movie of asingle point moving under the
action of GBM, we would not be able to distinguish the
backward movie from the forward one. But why should the
physical properties depend on our common way of observa-
tion or on our observational possibilities? And whatfinite
number of points is sufficient to distinguish between forward
and backward motion? Superimposing all the phase points of
the trajectory of a single particle onto one frame, as in Fig. 3,
we would be able to make the distinction between the past
and the future, between impossible and natural.

The simple model system ofN noninteracting particles in
a rectangular boxf19g shows that a large number of particles
alone is not sufficient for irreversibility. The arguments of
this section support this line of thought in that the dynamics
of some systems may bring about the unidirectionality of
microscopic evolution, manifesting itself in the appearance
of attractorssand repellorsd. Observing then systems ofN
particles in the usual way, the inherent microscopic irrevers-
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ibility becomes more and more pronounced with growingN,
but it is present in the system all the time.

Moreover, the approach connecting irreversibility with a
large number of particles is not straightforward either: it re-
quires, e.g., the thermodynamic limitN→` to obtain irre-
versibility. For further details, see, e.g.,f20g, giving a nice
treatment of the difference between chaotic and irreversible
behavior of Hamiltonian systems.

It might be appropriate to mention at this point the
Poincaré recurrence theorem, stating that any isolated, lo-
cally measure-preserving system will eventually return close
to any of its previous states. Approach to an attractor, an
object dense inE, has such a recurrent property. But the
property ofbeing closein phase space does not mean being
of a similar age: in an arbitrary close neighborhood of any
point, there can be points of any age. The mixing property of
Bw implies that the distance in the sense of metrics does not
imply the distance in time, norvice versa. In this sense, the
recurrence does not contradict irreversibility.

B. Irreversibility in the evolution of many points

The analysis of the behavior of a single point may be of
interest on its own, but the essential properties of the model
are seen much better when observing the action of GBM on
a set of points.

The initial state can be, in the case of GBM, prepared
essentially by defining a subset ofE and filling it uniformly
with random pointssor according to an appropriate distribu-
tion functiond. The evolution of such a set can be observed in
the author’s animationf28g, where the subset can be chosen
as a rectangle. Watching the evolution, one can see that
points contained originally in the bounded subset will in the
future get into a growing number of horizontal stripes, and in
the past into vertical ones. Going from the past to the future,
they will pass through the “present” subset. This situation is
depicted also in Fig. 11.

Consider a setV−k of N points from which a setV0,
located within a small square, will evolve afterk iterations.
The greater thek, the closerV−k is, in the usual sense of
metrics, to a setVr of points randomly distributed oversthe
repellor ind E. However, irrespective of how close the latter
two sets become, their future behavior will be essentially
different. After k iterations, the first will becomeV0, the
second will look like the attractor.

The first question pertaining to the second law can be
formulated in this case as asking why it is not possible to
preparea state corresponding to a distant past. To answer it,
it is sufficient to note that the evolution of a set of points,
although being reversible, does not offer an equal possibility
for preparation of all initial states. Present states—e.g.,
points filling the small square inE—can be prepared without
the slightest problems, but to prepare a staten steps before
would require localization of points in 2n vertical stripes of
E, and in every stripe with different, and well specified, den-
sity scf. Fig. 10d. How impossible this is can be best under-
stood when we realize that this task is equivalent to the one
of preventingthe occurrence of points in the complementary
subset.

FIG. 11. Three states in evolutionswith w=4d of an initial set of
2500 randomly chosen phase points, concentrated in the square sub-
set of E. We are readily able to distinguish between the past, the
present, and the future. The projections of points on the diagonal
y=1−x represent an analogy to the positions of physical particles.
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Then the answer to the above question is that preparation
of past states would require us to create them according to a
distribution function with wild variation, which ispractically
impossible. Moreover, this function is extremely close to the
other one, obtained by averaging of the former, and describ-
ing a readily preparable present state. So the preparation
would have to be, in addition, extremely precise. Here again
we see the crucial role of a sensitive dependence on initial
conditions, since two distribution functions, differing “mac-
roscopically” only slightly, have an essentially different fu-
ture.

The second question, why we do notobservestates typi-
cal for the distant past, can also be answered easily: we do
not observe them because any such state quickly becomes
“present” or future, and observation means that we are
watching a system with an unknown past without influencing
it.

VIII. MACROSCOPIC IRREVERSIBILITY

Let us find out now what we can learn about GBM if we
want to consider it as a model of a physical system, exhibit-
ing the difference between microscopic and macroscopic be-
havior. The difference derives typically from the distinction
between the full description in phase space and various re-
duced descriptions. In the case of GBM, the unit squareE
can be viewed as the phase space of one particlesdenoted
usually as them spaced, and any set of points in it as the
complete description of a state of a 1D system of noninter-
acting particles. If we want to use the model to illustrate the
micro/macro dichotomy, we have to find a counterpart to the
less complete description.

We depart from the inversion operatorT, the effect of
which is analogous to the inversion of momenta in classical
mechanics. If the GBM has to resemble, at least remotely,
the dynamics of 1D gas, then the particle position should be
represented by a variable which is an invariant ofT. The
projection of points inE onto the “second” diagonal,y=1
−x, has this property and we therefore assume that it repre-
sents positions. The projection of the attractor looks like a
stationarysnondequilibrium distribution of points, which can
be called the “limit state.” Due to the symmetry with respect
to the diagonal, the projection of the repellor will beidenti-
cal to that of the attractor. The orthogonal projection of a
point in E onto the “first” diagonal,y=x, could be viewed,
with certain reservation, as the “momentum” of a particle.

The “macroscopic” behavior of the system of particles is
then described by what can be seen on the second diagonal
ssee Fig. 12d. There we no longer observe the approach to the
attractor, nor departure from the repellor. In the direction
from present to future, we see only the change of the inho-
mogeneous distribution of positions into the time-
independent limit state. In the direction from past to present,
we see the opposite change of the almost homogeneoussnond
equilibrium state into the inhomogeneous present one. More-
over, we are not able to distinguish between the past and the
future due to the attractor/repellor symmetry. The transition
from past to present contradicts the second law for a gas on
a line; the transition from present to future is in accord
with it.

We can now answer the two questions posed traditionally
with respect to the second law. We already know that we
cannotpreparemicroscopically the “past” state because this
is practically impossible. But the macroscopic preparation
offers still fewer possibilities, since in this case we can “as-
sign” only positions to particles, but not “momenta.” If we
were even somehow able to create some specific arrange-
ment of points on the diagonal, we would know nothing
about their “momenta,” so the latter would be necessarily
random, and consequently the phase points would not be on
the repellor. This explains why it is not possible to prepare
macroscopically a state which would evolve contrary to the
second law, and it seems to be the full explanation.

We cannotobserveevolution going from the repellor to
the present state for different reasons. First, any observation
of a closedsisolated or thermostattedd system has finite du-
ration. If we regard the trajectory generated byBw

k as a se-
quence of states with anunboundedpast and future, then the
probability of observing anyspecificfinite sequence of states
is zero. The observation of the present state is by definition
specific and finite, so the probability to find it at randomson
a randomly chosen trajectoryd is vanishingly small. But the
probability of picking atarbitrary interval with exclusively
past statesson the repellord is the same as that of seeing one
with exclusively future statesson the attractord—i.e., 1 /2.
However, we cannot distinguish macroscopically between
the past and the future states. This explains why we are not
able to know that we have seen a system in the past even if
it would be there. This holds even under the assumption that
systems can exist under unchanged outer conditions indefi-
nitely.

But the trajectories of closed systems do not have un-
bounded past. In the finitely remote past, a state “came into
existence” as a result of interaction of the system with the

FIG. 12. The projection of evolution depicted in Fig. 11 onto the
second diagonalsscaled to unity lengthd. Only 500 points were used
to make the structure visible. The left-hand side of the line corre-
sponds to the points0, 1d in E. We are evidently not able to distin-
guish between the past and the future of the projected set, but we
readily see the difference between both on the one hand, and the
“present” on the other.
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surroundings, and afterwards its boundary conditions re-
mained unchanged. That “first” state was actually the
“present” one, and from the moment of its appearance the
system tends to the attractor. Therefore, the unbounded past
of the presently observed state is actually an illusion: from
the existence of the present state we canassumethe exis-
tence of the past states, we can even in principle recapture
them, but the mere existence of the present state does not
guarantee the real existence of past states on the repellor.
Thus we can find the system always only in the future, ap-
proaching the attractor. This explains the second law in the
form stating the properties of observed states, because it de-
scribes the behavior of a system with an unknown past.

This leads us to formulate the macroscopic irreversibility
of the GBM as meaning that the evolution of this system
approaches an attractor, and if it would be possible to recover
its evolution from the past, the system would depart from the
repellor. Such formulation is not subject to the Loschmidt
paradox; it is free of any seeming contradictions. In my view,
these are sufficient reasons to accept it. However, to do this,
we have first to take into account that the usual statement of
irreversibility applies to conservativesisolatedd systems
which should be simulated byB2—the classical Baker map.

IX. THE CASE OF THE CLASSICAL BAKER MAP

In the previous reasonings, we were dealing mostly with
the full interval of parameter values,w.1. However, the
specific case ofw=2, corresponding to the classical Baker
map, does not share all general properties stated above, and
the question therefore arises as to which of the properties do
not carry over to this specific case and what consequences
this may have.

The attractor of the GBM reduces, forw=2, to the set of
horizontal lines withyik=ci /2

k, wherek denotes the genera-
tion number andci ,2k is an integer. Similarly, the repellor
becomes the set of vertical lines withx coordinates of the
same type,xik=ci /2

k. Speaking mathematically, these sets
represent an attractor/repellor pair as wellssee, e.g.,f15g, p.
82d, therefore we will continue to denote them so.

From the physical point of view, however, those objects
are usually considered irrelevant, since they are not
“strange.” All dimensions s3d of the attractor and repellor
namely reduce to 2, so that the latter arehomogeneousand
consequently do not represent readily “visible” objects.
Moreover, the sum of Lyapunov exponents

l1 + l2 =
2 − w

w
lnsw − 1d, s22d

which should be negative for strange attractors, becomes
now zero, which means that the measure of subsets ofE is
not being contracted underB2. Such a homogeneous attrac-
tor, nevertheless, “attracts” the points iterated byB2 in the
important sense that the iterates visit the neighborhood of
any point ofE with equalprobability.

Returning now for a while to cycles, we have observed
that the number of periodic orbits containing points with a
denominator not exceeding a given numberd grows with
falling wù2, until in the case ofw=2 all points with a

rational x coordinate, differing from those of the attractor/
repellor ones, lie on trajectories approaching cycles. This can
be understood considering that theBx reduces in this specific
case tox→2x mod 1 and the condition of ap cycle, Bx

px
=x, then has a unique solution for any rationalx. The attrac-
tor is therefore approached only by points with irrationalx
coordinates, and as the former is uniformly dense inE, this
behavior can be understood as a chaotic approach to homo-
geneous coverage ofE. But the approach to very long cycles
is indistinguishable from the approach to a homogeneous
attractor, so that also the majority of trajectories with rational
points will seem to approach the latter. The typical observ-
able behavior of all points—rational and irrational—will
then look like chaotization, or an approach to equilibrium.

Accepting the terminology according to which the attrac-
tor srepellord exists even in the classical Baker map, being
only “invisible” there, we can formulate the obtained results
in a unified manner, treating the classical Baker map, carica-
turing an isolated system approaching equilibrium, in the
same way as thermostatted systems approaching nonequilib-
rium steady states.

The notion of absolute age has the same meaning forw
=2 as for w.2. The present states are defined by simple
coordinates, and the present distribution functions have small
variation. One can tell the difference between past and future
in the evolution of a point, and choosing an inhomogeneous
initial spresentd distribution function, one can distinguish mi-
croscopically between past and future not only by absolute
age but also by predominantly vertical or horizontal stripes
of maxima, respectively—at least in the initial stages of evo-
lution, not too far from the present states.

Absolute age is essential, in my view, for the explanation
of irreversibility. What was told about it above applies
equally to the specific case ofw=2 and supports the view
that what makes the difference between reversibility and ir-
reversibility is actually observability:macroscopicirrevers-
ibility is observable, whereasmicroscopicis not—it is hid-
den for macroscopic methods of observation. In the case of
w=2, it is hidden also for microscopic methods. Only the
generalization towÞ2 is able to disclose its microscopic
existence. And that was the reason for the study of the gen-
eralization of locally measure-preserving maps.

In this context, we should not leave unnoticed the Zer-
melo paradox, relying on the Poincaré recurrence theorem.
According to it, even if a nonequilibrium state of anisolated
system evolves to equilibrium, it must eventually return
close to the initial state, thus violating the second law. This
means, as applied toB2, that a system of points, starting, e.g.,
in a small subset ofE, will eventually return close to it. Apart
from the standard reply that the recurrence time is enor-
mously long, the model ofB2 enables us to give further
refutation of the objection. Since all rational points approach
cycles, such recurrent behavior, albeit not excluded, would
be possible only for extremely exceptional sets. Choosing
namely the same denominator ofx coordinates of all points,
one obtains—as a rule—the sets “condensing” on a limited
number of points inE. However, it is not too difficult to find
also points which will approach periodically moving sets.
This confirms the existence of recurrences, but also demon-
strates how rare and physically irrelevant they aref29g. In
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this sense, the recurrence does not contradict the formulation
of the second law about the arrow of time pointingall the
time from the past to the future.

X. FROM THE SIMPLE MODEL TO REAL-WORLD
PHYSICS

I believe that the model of the generalized Baker map is
interesting even in itself. However, it was studied with the
hope that its analysis will shed light on the properties of
more realistic physical model systems. By the latter I mean
mathematical models, the essential aspects of which mimic
the properties of corresponding real physical objects. Let us
start, therefore, the concluding discussion by a reconsidera-
tion of the basic assumptions used in the study of the gener-
alized Baker map.

All my numerical simulations were restricted to rational
coordinates. The reason was to circumvent artificial irrevers-
ibility, which would otherwise appear as a numerical artifact
due to rounding errors. Rational numbers are a dense subset
in the field of real numbers, and almost everything men-
tioned above for rational coordinates of points will apply to
real ones as well. There is actually only one major problem
which the exclusive use of rational numbers could cause in
our study: the absence of periodic orbits for trajectories con-
taining points with irrational coordinates. This to me does
not seem to be an essential problem, if we are aware of it.

Many “realistic” sin the above sensed N-particle model
systemsse.g., dilute gas models with Lennard-Jonesf21g or
hard-spheref22g potentiald share a sensitive dependence on
initial conditions with GBM. B2 is known to be strongly
mixing f14g and the same is confirmed for many classical
systemsf23g. The mixing property is a consequence of
Lyapunov instability, discovered in many interesting models
f22g. The evolution of systems with this property leads to
local contractivity of phase volumesmeasured in the forward
direction of timesimplying the opposite when tracking the
evolution backwardsd, or to uniform coverage of phase space
by the trajectory. Approach to an attractor in GBM is then
analogous, in these more realistic systems, to approach to a
nonequilibrium steady state, or to equilibrium.

The notion of absolute age enables us to view the past and
the future as related tosstrange or homogeneousd repellors
and attractors—the structures in phase space, defining the
arrow of time. The age, as introduced here, relies on the
property ofBw, that the two coordinates of phase points be-
have differently underBw. It is evident that this results from
different contractivity of the map in different directions. We
can therefore expect some signs of the absolute age in all
systems with strange or homogeneous attractors.

We pointed to the different role of positions and momenta
in the transition to macroscopic description. The momenta
are responsible for the microscopic difference between past
and future steady states, but they do not help us in their
macroscopic identification. This state of affairs lies at the
basis of macroscopic indiscernibility between past and future
and thus supports our view that macroscopic description is
intimately connected to the loss of information about the
system under considerationf3g. This may best be seen in the

fact that we are readily able to impose macroscopic con-
straints on positions, but we are not able to do the samesor at
least not to a comparable extentd with momenta. This dra-
matically reduces our ability to influence the states of physi-
cal systems, thus leading to apparent irreversibility.

In this sense, the GBM manifests features which coincide
with the general properties of e.g., rarefied real gases, as
regards the global behavior in the distant past and future—as
far as the interrelation between reversibility and irreversibil-
ity is concerned. The “mechanisms” by which irreversibility
appears in reversible systems are common to GBM and
strongly mixing models ofN-particle systems. We may thus
say that GBM represents an appropriate—albeit extremely
simple—model, demonstrating essential aspects of interrela-
tions between reversibility and irreversibility. The properties
which became apparent in the study of GBM are therefore
applicable to more realistic models, as follows.

In real experiments, we prepare a state by some manipu-
lations with particles. The mathematical counterpart of such
preparation is the localization of phase pointv0 of a realistic
system in its phase space. The evolution of the state then
results from physical laws and isrepresentedas the action of
mathematical operatorSt. Whatever the physical preparation
of a state may be, the localization will always result in a set
of numbers having absolute precision. Of course, we do not
know any state with infinite precision, but from the view-
point of classical mechanics, any statemust be absolutely
preciseper se. Application to v0 of St, simulating relevant
physical law, yields absolutely precise numerical results for
vt, for any value oft.0, provided the system is determin-
istic.

As far as GBM is concerned, one can observeson a moni-
tord even evolution going from the repellor—i.e., from the
distant past—to the present. Such evolution will take only a
finite number of iteration steps: after reachingv0, the point
will move sforeverd to the attractor. However, we cannot re-
construct past evolution in real physical experiments, since
we cannot prepare a state corresponding to the precise local-
ization of the pointTvt. A notable exception is provided by
experimental manipulations such as those used in spin-echo
experimentsf24g, mimicked in numerical experiments by
mathematical reversal of future states. However, due to the
sensitive dependence ofvt on v0, the slightest deviation
from the exact value ofTvt would cause a completely dif-
ferent trajectory.

The same applies to the preparation of states according to
a distribution function. In both cases, we prepare states and
functions which are “present” and we are not able to prepare
“past” states nor functions, which would eventually evolve
into the present ones. Our possibilities to prepare states of
physical systems are rather crudely restricted to states which
are in the absolute sense “present.”

In my view, this explains the seeming contradiction be-
tween microscopic reversibility and macroscopic irreversibil-
ity as rooted already at the microscopic level. Or still in other
words, the problem of irreversibility hasprimarily nothing to
do with the micro/macro dichotomy. It is connected to the
past/future dichotomy instead, manifesting itself in the asym-
metry of the preparation of states close to the repellor/
attractor. The macroscopic level just adds a further restric-
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tion, consisting in our impossibility to observe or practically
influence momenta of particles.

The view presented in this paper may seem to contradict
the orthodox approach, stressing the role of a large number
of particles in obtaining macroscopic physical behavior, but
this role is, actually, not disputed here, it is just not given the
utmost significance. One certainly recognizes that the possi-
bility to prepare a “past” state depends crucially also on how
large the system is. Moreover, what is claimed, e.g., inf20g,
is that “the equality between the physical entropy production
and the dynamical phase space contraction rates of Hamil-
tonian thermostatted systems only holds for macroscopic
systems.” Restricting the scope of the paper to the investiga-
tion of irreversibility only, such arguments do not apply to it.

XI. CONCLUSIONS

We have analyzed the parametrized set of generalized
Baker maps as simple models of time-reversible evolution,
exhibiting signs of irreversibility. The analysis has shown
that it is possible to define past, present, and future states and
distribution functions on the definition domain of the map.
The question about the origin of the preferred orientation of
evolution—the arrow of time—can then be answered by stat-
ing that it is rooted in contractivity of the map: the latter
produces a unique direction of evolution which can be
brought into relation with the arrow. This applies equally to
the measure-preserving classical Baker map.

In an effort to view the map as a model—albeit a very
crude one—of real systems, and to apply the results of the
model to them, one sees that a kind of correspondence can be
established between GBM and macroscopic systems, the dy-

namics of which has an attractor/repellor pairsvisible or hid-
dend. The second law of thermodynamics for such systems
can then be explained in the same way as the unique direc-
tion of evolution in GBM. Namely, it can be regarded as a
consequence of the dynamics which—if they continue to en-
compass the past—would lead from the past repellor to the
future attractor. The observed properties of the systems then
result from this simple symmetry. Macroscopic observation
of systems—the sole viewpoint available to us—hides this
fundamental microscopic property and causes a series of
seeming contradictions between the two directions of time.
Accepting this standpoint, we can claim that there is no real
“problem” with the law and that the objections posed against
it sincluding the classical ones of Loschmidt and Zermelod
are simply the results of misunderstanding.

I think that the described model essentially explains the
origin of observedsmacroscopicd irreversibility in unobserv-
ably smicroscopicallyd time-reversible systems. The ob-
served macroscopic irreversibility is actually reversiblein
principle, or the microscopic reversibility is observationally
irreversible. The driving force of such behavior is a sensitive
dependence of the evolution on initial conditions, which rep-
resents the hallmark of chaos.
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