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Irreversibility in a simple reversible model
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This paper studies a parametrized family of familiar generalized Baker maps, viewed as simple models of
time-reversible evolution. Mapping the unit square onto itself, the maps are partly contracting and partly
expanding, but they preserve the global measure of the definition domain. They possess periodic orbits of any
period, and all maps of the set have attractors with well defined structure. The explicit construction of the
attractors is described and their structure is studied in detail. There is a precise sense in which one can speak
about the absolute age of a state, regardless of whether the latter is applied to a single point, a set of points, or
a distribution function. One can then view the whole trajectory as a set of past, present, and future states. This
viewpoint is then applied to show that it is impossible to definariori states with very large “negative age.”

Such states can be defined ordyposteriori This gives precise sense to irreversibility—or the “arrow of
time"—in these time-reversible maps, and is suggested as an explanation of the second law of thermodynamics
also for some realistic physical systems.
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I. INTRODUCTION roughly subdivided into those treating ensemblés an

This paper is devoted to an analysis of one aspect of th8Verview, see, e.gl1] and references thergiand the others
second law of thermodynamics, namely its statement abouitudying individual systemesee, e.g.[2]). _
irreversibility. However, | am not going tprove essentially In isolated systems, the irreversibility is usually being re-
new facts concerning realistic physical systems. What | acduced to asymmetry in possibilities to prepare initial states
tually want to do is tdllustrate the origin of the irreversible Which would evolve to equilibrium as compared to those
behavior of time-reversible systems using an extremelyevolving away from it[3,4]. In open systems, the classical
simple model. The reason for such an approach is that, in mgpproach is to view the environment as a source of random
view, the second lawat least in its most general formula- perturbationg[5,6], thus actually substituting deterministic
tions) does not formulate nevacts about dynamical sys- systems by stochastic ones. In such a way, however, the most
tems, it just describes their properties in a new form—that issppealing aspect of the problem—the reconciliation of mi-
why it is being derived from the underlying dynamics. Onecroscopic reversibility with macroscopic irreversibility—is
could say that the problems usually associated with substameing lost.
tiation of this law are not so much of a physical as of a Recently, a new promising approach to solution of the
conceptual nature. In such a context it may be acceptable toroblem has been undertaken, studying, among other things,
rely on demonstrations instead of proofs, since the topic ishe simple model called the rotated Baker mi@} defined

more a question of semantics and interpretation. on the unit square in the following way:

Microscopic laws of molecular dynamics are invariant
with respect to the time reversal: only the momenta change B.(xy) = {(2x/3,3y) fory<1/3 0
their signs upon the transformatior- —t. This implies that n (x/3+2/3,3/2-1/2 for othery.

if these laws allow some evolution of a system, they allow__ . . . o
also an evolution in which the system passes through thehis model generalizes the well-known “classical” Baker
same spatial configurations as the original ones but in th8'aP:
reversed ordefand with reversed velocitigsIf the same ) {(2x,y/2) foro<x<1/2 -
systems are viewed macroscopically, they evolve, on the C(x,y) = 2
contrary, in one direction only: they demonstrate irreversibil- (2x-1,y/2+1/2) for otherx,
ity which is formulated in the second law. According to the and has many interesting properties.
latter, only evolution leading to growth or preservation of |n this context, we will be interested in further generali-
disorder is observable, or in other words, there is an arrow ofation of Eq.(1), which represents a very simple model en-
time. This conceptual asymmetry represents a fundamentabjing us to demonstrate many features of interrelation be-
problem, called the problem of irreversibility—known for wyeen reversibility and irreversibility.
more than a century—which does not seem to be completely |n the following discussion, we will be frequently encoun-
solved up to the present time. tering the notions of measure and dimension, so that | find it
There is a plethora of theories trying to explain the originmeaningful here to give a brief description of what is meant
of macroscopic irreversibility. The approaches can beyy them.
Avoiding the use of excessively technical language, we
can say thameasureu on R" is a set function assigning a
*Electronic address: Juraj.Kumicak@tuke.sk non-negative number to any subsetidfin such a way that
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the measure of the empty set is zero, the measure of a subset M* M
ACB is u(A)< u(B), and the measure of the union of sub-
sets is less than or equal to the sum of the measiihes
strict equality holding only in the case of disjoint subgets
This notion is a generalization of that of area or volume and
it frequently reduces to it.

A specific kind of measure is thdimensionof a set,
which is again a generalization of our intuitive notion con-
cerning physical(topologica) dimension. There are many

ways to define and calculate it, leading to different values.

Y-k > Y0 > Tn
T T T

Mk

Ty ) - T Tn

FIG. 1.
reversibility.

Commutativity as the defining property of

The standard set of dimensiof] is based on partitioning
the phase space into a finite numié) of disjoint € cells
(boxes and considering the probability;(e) (the so-called
natural measupeof finding points of the set in the bax Of
course, the probability has to be normalized so that

N(e)

pi(e) = 1.

1

The dimension is then calculated, for any integerO, ac-
cording to the formula

1  Inl(se
D= lim ,
S— 1 e—0 In €

3

where

N(e)

I(s,€) = D o
i=1

Specifically, fors— 0 we obtain the Hausdorffor box-
counting dimension

In[N
Dy =  lim MNOT 4)
e~0 Ine
and fors— 1 the information dimension
N(e)
> pinp
D;=Ilim ———, (5)
e—0 Ine

which is commonly used to describe basic properties of fracanalogy to momenta—as is, e.g.,
tals. In effect, the information dimension of a set of pointsdimensional

gives crude information about its inhomogendience the
name.
It may be worth mentioning that fa— 2 we obtain the

erator S, may differ significantly fromS, so that the
dynamics of the inverse evolution may be different from that
of the forward one. If, howeves; and S differ just in the
sign of the parametdt such reversibility reduces in a func-
tional analytic approach to the statement that the family of
operatordS} represents a group, defined by a generator, the
latter being closely related to the differential equations de-
scribing the dynamic§3].

Another definition is not as concerned with changing the
direction of evolution as it is with the possibility to “reverse”
the final statey, to a reversed on&vy; (typically by reversing
the directions of all momentand with application of§ to
the latter. The dynamics is then said to be time-reversible if

(6)

The question about the existence ®f is not so important
here and therefore such an approach seems to be more gen-
eral than the previous one.

Obviously, the properties of the reversal operakowill
depend orf5 in general. We expect to have different opera-
tors T for different evolution operatorS,. Therefore, T can
be any transformation which transforms a final state of evo-
lution into the initial state for the same evolution—fulfilling,
of course, the propert6). Every such transformation will be
evidently idempotent, i.eT?=1, and thereford 1=T.

In real physical systems, the operafbras the evident
meaning of the change of momengg:— —p;. The fact that
for time-reversible systems we ha®&T =Ty, Is just the
consequencef the physical laws there. If, however, we want
to speak about reversibility of systems in which there is no
the case of two-
maps which will interest us in the
following—we have to accept this consequence akefni-
tion and denote as reversible all maps for which there
exists an operatof, making the diagram in Fig. 1 commu-

STy, =Ty, forallt>0.

correlation dimension. One can also prove under rather genative, i.e., such thav"T+y,=Ty,, or more generally

eral conditions thaD,<D, for q<r.

II. DEFINITIONS OF REVERSIBILITY

To introduce shortly the notion dfir)reversibility, con-
sider a continuous dynamical syste flow) defined in a
phase spac€ and described by differential equations.Sf

MkT')’n =TY¥nk- (7)

The operatofl is defined here not by the physical essence
of M, but just by the latter requirement, and we havéind
it. If it does not exist, the maM is not reversible. For
reversibleM, the inverse map~ will then be, evidently,
M 1=TIMT=TMT.

denotes the evolution operator, taking the present sggte

e I" to the future oney,=Sy,, then the present state can be
retraced into the past as well. If this can be achieved by
applying a well-defined operat& (originating in differen- We will generalize the classical mdg) to what may be
tial equationg, i.e., Syo=7v- then reversibility of the dy- called the “generalized” Baker mdg, (GBM for shord, in a
namics means th&d is defined. However, the inverse op- way similar to the one described i8] and denoted there as

Ill. GENERALIZED BAKER MAP
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The expansions caused By, in the x direction and con-
tractions in they direction are characterized by local loga-
rithmic ratesl, andl,,

Bw
— IBy(X, IBy(X,
1 o= in BN g g g By g
w
Since the action oB,, is different for points lying to the left
and to the right of the dividing line, we will have two rates in
ul the x direction,
FIG. 2. B,, transforms the filled rectangle with the aréa L_ R _
-1)/w into the rectangle with the areau/ Similarly, the comple- h=In and Iy(w)=Inw (13
mentary empty rectangle with the areanlié transformed into the ) ) )
one with the aregw—1)/w. and two in they direction,
the “slightly generalized Baker’s transformation.” The map ly=In w and 1(w)=In (14)

is defined[25] for any w>1 and is acting on pointgy

=(x,y) of the unit squareE=[0,1]X[0,1]. For the points The mapB,, represents probably the simplest possible

0=x<(w-1)/w, its action is model exhibiting “microscopic” reversibility and “macro-
scopic” irreversibility, which strongly motivates its study as

B, (xy) = X y ) that of an example illustrating the foundations of irreversible
wiXY) = w-1"w thermodynamics, see, e.11]. To start with, we mention
o that all the points oE can be subdivided into fixed points,
and for the remaining ongsv—1)/w<x<1, cycles(periodic orbit$, and attractors, as well as points ap-
proaching those sets. Let us consider each of the sets sepa-
w-1 1 ratel
Bu(xy) = Wix=1)+1,==y+ . (9) Y-

Later it will be advantageous to have the above definitions

- . A. Fixed points
rewritten in the form

The mapB,, possesses two hyperbolic fixed poinis, 0)
_J(LxLy) forO0s=x=(w-1)/w and(1, 1). The local stable manifold\; . [12] for the point
Bulxy) = (Rx,Ry) for (W= 1)w<x=1, (10) (1, 1) contains any subset of the vertical lire 1 in E, since
Y Bl Yo approachesl, 1) for yo=(1,y,) with anyyg within this
with the evident expressions for the “left” and “right” opera- subset. Similarly, the local unstable manifold for the pét
tors: Lx=wx/(w-1), Rx=wx-w+1, Lyy=y/w, and Ry  0) contains any subset of the horizontal liyre0 in E (which
=(wy-y+1)/w. we shall denote as therimary linein view of its later role
B, is a piecewise linear mappin@ee Fig. 2 behaving contained in(0,w-1/w), becauseB},y, departs from(0, 0)
differently to the left and to the right of the vertical line  for y,=(xp,0) with anyx, within this subset. We will discuss
=(w-1)/w, which we will call thedividing line. One can corresponding global manifold&® and W later.
easily check that in order for the map to be time-reversible,
i.e., fulfill the time-reversal conditio}, Ty,=Tyo, one has
to define the reversal operatdr as “rotation” around(or B. Cycles
reflection with respect fothe second diagongl=1-x, i.e.,

as The generalized Baker map appears to have a rich struc-

ture of periodic orbits, or cycles. Consider a poyt(x,y).
T(x,y) = (L-y,1-%). (11) Any co_mbination of op_erat_orlsx, R_’x acting conse_cuti_vely on
x will yield an expression linear i®, so that setting it equal
The map can be analyzed using modern computer algebtta x will give us an equation with a unique solution. As an
systems, which enable us to compute the actioBpfvith  example, the equatioh,R L,x=X leads to
absolute precision. One can then observe time-reversed evo- )
lution on a computer screen, and analyze the reversibility. M -
However, to prevent rounding errors, such computations re- (w-1)2 '
quire using rational coordinates and ratiomal instead of
finite-precision decimal valug4.0].
All simulations described in the paper were performed w(w - 1)2
under the above conditions. The analysis was further simpli- X = W (w-17" (15
fied by restrictingw to integers. The latter has no effect on
the results presented in the paper, so that in the following We can find the solution for the second coordingtesimi-
will mostly suppose integer values of larly, using the equatioh R L y=y,

with the unique solution
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_w
N owetr

The pointy;=(x;,Y;) is then one of the points of the three-
cycle (the remaining two points can be calculated by two
applications ofB,,). Remembering that the operatoy (R,)

(16)

: . o 0.6"
acts on the point to the leftight) of the dividing line, we see
that the prescribed succession of operatars can call it the y
operator structureof a cycle will create a cycle which will 0.4

visit corresponding sides of the dividing line.

There are only two structures which do not generate
cycles, namehL" andR", leading to stationary point®, 0 0.2
or (1, 1), respectively. But for any other structure there exists
precisely one cycle visiting both sides of the dividing line in L
the given order. This shows that there is a one-to-one corre- (R AR il
spondence between theoordinate ofrbitrary point on the 02 04 06 08 1
cycle and the sequence of positions of remaining points with
respect to the dividing line. Therefore, thecoordinate of a FIG. 3. Iteration of the point95/100,95/10pby the action of
point of the cycle “encodes” the sequence of operatqrs B;discloses a distinct attractor with clearly visible self-similarity. A
and R, (operator structupe and vice versain a way very total of 10 000 iterations are shown.
similar to that of the Bernoulli shiff8]. This is related to
what is usually referred to as “symbolic dynami¢41]. of its points represents typical properties of GBM.

The set of all possible cycles has interesting structure and
deserves a detailed study. Here | just mention some relevant

results, starting with the remark that due to contractivity of C. Attractors and their properties
BW.in they direction, every cycle is a limit set for a subset of  Averaging the logarithmic expansion ratel) and (14)
points inE. over typical trajectories it (see[13]), one obtains what is

The number of cycles grows exponentially with the cycleusually called Lyapunov, or time-averaged, exponents—the
length. There arepossible combinations of two operators positive one
L, andR,, having the lengttp. Two of them correspond to "
fixed points, and in the case in whighs not prime, some of eV hew et W 17)
the combinationgdenote their number) may be further 7w w-1 w wo (w=1wt
reduced to ones corresponding to shorter periods. Bvery

the remaining 2-r—2 combinations represents cyclic per-

and the negative one

mutations, so that they correspond to the same cycle. The w=1 1 1 w-1 1 w-1
total number of different cycles of the lengghis then (2P Ap= In—+—1n =W In e (18)
-r=2)/p.

For any value ofw we have, consequently, an infinite From the above expressions one sees that with growing
number of all possible cycles. The cycles created by the>2, both exponents are monotonously decreasing, and their
same sequences bf, and R, are topologically independent limit behavior forw— o is A;(w) —0 and,(w) — —.
of w, and with growingw they are just scaled to smaller = The existence of the positive Lyapunov exponent suggests
dimensions(the denominators are growih@nd translated that one should expect chaotic behavior of the iterates of
towards the pointl, 0). This implies that there is the same By, (for almost everyy, e E), and the existence of the
number of cycles for anw. In the case ov=2, every point negative one the existence of(strang¢ attractor[8]. Both
with an odd denominator of thecoordinate belongs to some are observed when one iteraigsbeginning with almost any
cycle. Forw> 2, however, we do not have such a simple rulestarting point—see Fig. 3.
due to the above-mentioned scaling. It follows from previous remarks that exceptions to this

Consider now a period with very large Only a very general statement include points Wf . approaching the
small proportion out of 2 sequences of corresponding op- hyperbolic fixed poin{(1, 1), and points belonging to cycles,
eratorsL, andR, will be ordered in any sense—the majority or approaching them.
will look like random sequences. The orbits they will gener-  One can prove that the attractor consists of an infinite set
ate will therefore be indistinguishable from random sets ofof lines parallel to thex coordinate, see Fig. 4, and can be
points on the trajectories. generated by successive applicationsBgfto the primary

It is evident that the set of points belonging to cycles, andine. The construction is based on the iterated function sys-
of points approaching them, is of zero measureEirand  tem, se€[10]. It is well known that in the case of;+X\,
consequently the behavior of cycles is not what we could<0, the attractor is &multi)fractal object.
observe in GBM frequently. From the definition of an unstable manifold, it follows

We now come to the most important subsetEpfwhich  that the points lying exactly on the attractoe., points gen-
is—as we shall see—dense Ehand therefore the behavior erated by the described construcliaepresent the global
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0.4

0.2

10
generation

FIG. 4. lterative generation of the attractorBjf (w=5). First,
B,, is applied to the line segmegt=0 (primary ling. We call the
resulting two lineqiincluding the primary lingthe first generation.

Applying B,, repeatedly to all lines of the previous generation, we

obtain 2' prefractal lines aften iterations. New generations are
illustrated by gradually shorter lines.

unstable manifold\ for the point(0, 0. In this sense, the
latter represents the source for the attractor.

The attractor is markedly inhomogeneo(sirange for
greater values ofv. With growingy, its density decreases
(for w>2, but increases fov< 2 if we permit rational non-
integer values fow). With decreasingv>2, the inhomoge-
neity is less and less pronounced, until at last,vier2, the

PHYSICAL REVIEW E71, 016115(2005

16 18 20

FIG. 5. Functional dependence of information dimendigiw)
on the value of parameten. One sees that the dimension will
approach 1 with infinite growth ofv. The behavior for Kw<2
does not represent anything new since for these values the unit
squareE is just contracted in the direction of growirg

It can be proved15] that every attractor generated by an
iterated function system is the closure of its periodic points.
This suggests that the evolution generatedBRymay show
Poincaré recurrences.

IV. REPELLORS AND SYMMETRY OF EVOLUTION

Since our main preoccupation is the study of interrelation

limit object becomes the set of equidistant horizontal linesbetween reversibility and irreversibility, we cannot be inter-
The latter specific case will be treated separately in Sec. IXested only in the “future” of a state defined by an initial point

As with any attractor, one would like to know its dimen-
sionsD¢(w), s=0. The Hausdorff dimensiof®) is evidently
Do(w)=2 (see, e.g.[14]). The information dimension is cal-
culated with the help of formuléb), taking into account that

Yo, 1.€., in the trajectorypeginningin this point, but we have
to consider its “past” as well, viz. the trajectoepdingthere.
Here we will therefore try to find out what is possible to tell
about thewholetrajectory going through a given poing.

one can use, in place of probability, the density of iterates of Repeated application @&, to arbitrary pointy, generates

a typical single point{26]. Repeating the calculations of
Hoover and Poscfil3], but for generalv, one arrives at the
following expression for the information dimensi@b):

In[w"(w - 1)1™]
In[(w=-1w™]
Table | gives the dimension for a few valuesvgfand the
graph in Fig. 5 enables us to see the overall dependence

D;(w) on w. Evidently, one can obtain any value Bf(w)
from the interval 2=D;(w)>1, by controllingw. SinceD;

D,w)=1- (19)

a sequence ofuture points {y1, ¥2, .-+, ¥n-1, Yn}» Where
=B\‘§,yo. Let us denote by_, a point from which the poiny
ensued after the application of the m&f). Then thepastof
the point y, will be represented by the sequence
{Yers Yenets -+ -+ ¥-2,7-1}. Evidently, y,=TBTy,, and we
will call the inverted sequencgy_1,v_2, ..., Y-ni1, Y-nt the
backwarditeration of the statey,. The fact that it can be
obtained also by repeated applicationl?n;)jgl to yq is irrel-
ef/ant here.

It is clear thatTy, is arbitrary(or random in exactly the
same sense ag, so that the iterateB\'jvao will approach the

can be viewed as the measure of attractor inhomogeneity, tratractor as well. This has the following consequences. Since

approach of the dimension to the value of 1, with growivng
suggests that the iterated points tend to accumulede-
densé on smaller subsets d.

B,, is contracting in they direction, the distance between any
two points, having exactly the same coordinate, will
quickly decrease under the actionBﬁ, and the properties of

TABLE |. Information dimension of the attractor &, for some values of parameter

w 2 3 4

5 10 100 1000

Dy(w) 2.000 1.734 1.506

1.376 1.156 1.012 1.001
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FIG. 6. Symme?ry betvx_/e_e_n the_past and the future of the trajec- FIG. 7. Trajectory unwinding from a 6-cycle in the past and
tory (for w=5/2) with the initial point 5,=(1/10,9/10—denoted approaching a 4-cycle in the fututéer w=3), “generated” by the
by a box—lying exactly on the diagonal. initial point (16/73,63/108 denoted by a box.

the future trajectory will be determined essentially by e

coordinate of the initial point. The reversalinterchanges

the components of coordinates, so that during the backwar@oints lying exactly on the repellor represent the global
iteration they coordinate of the original point will similarly ~stable manifoldW® for the point(1, 1). In this sense, the
determine the past trajectory. We can thus say that the infollatter represents the sink of the repellor.

mation about thglobal aspects of the future is contained in  Returning to cycles, we discover an interesting property,
the x coordinate ofy, and the information about the past in applying to anyw. There are trajectories which unwind from
its y coordinate. We will express this fact by writing sym- 4 . cycle in the past and approactpacycle in the future;
bolically -y=(Xiut, Ypast- see the example in Fig. 7. In my view, such behavior illus-

Th'f]’ ho&/vevgr, rkneaTjS _:c[hatt_the pasL_of ta point vtw_ll Ei‘p'trates best the discussed difference between the past and the
proach (under backward iteratignan object symmetrica future, since it demonstrates that there exist two different

with respect to the attractor. As this object is composed of._ .. . ) .
A Lo . imits in the behavior oB,,, separated by intermediate states.
vertical lines, every point in its vicinity will move away from

it underforward iteration, since the differences mcoordi- l_het us rtnent||on 'g pt)ass[ng (;ha_t the pegod of th{ﬁ I;]Jture andl
nates are growing with iterations. That is why it is being"'c Past CyC€ IS delermined—in accordance with In€ genera
called therepellor. rule expressed above symbolically s (Xg, Ypas)—by de-

We have thus come to an important resalt:orbit going ~ neminators of the coordinatesandy, respectively.
through arbitrarily chosen pointy, has its past close to the ~ Bw can be viewed as mimicking the behavior of a thermo-
repellor, and its future close to the attractdn other words, dynamic systen{a nonequilibrium thermostatted one far
a typical trajectory generated by the actionByf departs(in # 2, and an isolated one fav=2) and therefore it could be
the pask from the repellor and approachés the futurg the ~ employed to explain the origin of irreversibility. In this way,
attractor. Such unidirectional behavior is sometimes charamne is led to the tentative conclusion that the evolution of
terized as demonstrating the existence of thedw of time some physically relevant systems, sharing common proper-
and here it is the direct consequence of the dynamics definaées with B, is such that their statespproach an attractor
by B,. The time reversal of such a trajectory will again beand in the past they depart from a repellor. This being the
going from the repellor to the attractor, sin€etransforms case, we arrive at an alternative explanation of the interrela-
future points into the past onéand attractors into repellors tion between reversibility and irreversibility, avoiding some
andvice versaThe time reversal is thus not able to changeparadoxes usually derived from the second law. For example,
this global aspect of evolution. the question of why we do not observe the evolution going in

This state of affairs can best be seen when we choose the direction from attractor to repellor now becomes mean-
point &, lying exactly on the second diagonal, i.e., a pointingless, because such a possibility is ruled out by the sys-
60=(%g,1-Xg). Such an initial point remains unchanged upontem’s dynamics. The problem is instead being shifted to the
reversal and therefore its past will be the reversal of its fuquestion of why we encounter an approach to the attractor
ture: past and future parts of the trajectory will be exactlybut not the departure from the repellor—both proceeding in
symmetric with respect to the diagonal,=T§,, see Fig. 6. one and the same direction of time. In other words, the ques-
Or still in other words, we obtain the past part of the trajec-tion is, why do we observe only one part of thel (and in
tory, in this specific case, by reversing its future. principle possiblgevolutionary trajectory? The next sections

Considering the explicit construction of the attractor, de-are devoted to tackling the problem of irreversibility in this
scribed in the previous section, we immediately see that thalternative formulation.
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V. AGE OF STATES 304 <
Since the typicalfull phase trajectory(considered un- f ooﬁ’f’j/
bounded both in the future and in the pasinsists of points 20 os‘ﬁ’
moving from the past repellor to the future attractor, it is 4
quite natural to call the points between the past and the fu- 10 /
ture thepresentones. This leads us to consider the possibility rd
of introducing an “age” that could be applied along the tra- 30 20 -9 |/ 10 20 30
jectory. P k
Looking at the definition(8) and (9) of B,, with rational ,/:10
w, we see that if we choose arbitrary poipt with rational S o] 0, o
coordinates, the coordinates 6f,=By, will be rational A -
too, and with growingn they will be represented as fractions B
of growing integersexcept the cases of periodic orbits
they will become more “complex.” The same applies to =301
backward iterationy_,=TBTy,. Since, by definition, the

denominator of any coordinate i is not less than its nu-
merator, we can assess the “complexity” or “simplicity” of  FIG. 8. Dependence of “absolute age’on iteration indexk.
coordinates by the value of denominators: smaller denomiAlthough one of the worst cases, with initial point
nators will mean “simpler” coordinates. (50 001/100 000,11/30 has been chosen here intentionally, the
Expressing an arbitrary point on the trajectouging frac-  age = differs from k by less than 10. This situation is far from
tional expressions for rational coordingteas y=(x,y) typical, because in a random choice of a point it is not probable to
=(p/q,r/s), we realize that in thédistani future the map- obtain such a.great diffgrepce in the precision of its two coqrdi-
ping of the y coordinates of points is dominated by nates. The typical behavior is characterlzgd_, _contrary to the_deplcted
—ylw, whereas that of the coordinates is dominated by °"€ by Wwo parallels close to(k)=k, exhibiting a sudden jump
x—x/(w=1). This means that thg coordinates will have aroundk=0.
greater denominators than tReoordinategs>q), whereas
in the (distan} past it will be the opposite, since the role of ~ -..,~6.93,-5.89,-4.84,-3.74,- 2.58,- 1.89,-.63,0,
c_oordinates becomes _exchanged. We could thus_base the no- 0,-1,0,2.33,4.21,5.30,6.41,7.43,8.44, . ..
tion of “age” on the differences—q. For future points, the
latter will be positive; for the past ones, negative. However

except for the points lying exactly on the diagorete Fig, which approaches, with growin§, equidistant values of

“age,” separated by exactly unit steps. One has to note that

6), the presence will not be sharp: we will not observe mo
notonous behavior in its neighborhood and different trajecto
ries may have present states of different ages. This is esp
cially true if we choosepresent points withg>s, making
them seem to be past in such a way.

To illustrate the situation, consider the following typical
subsequence of values-g for w=3 andk=-8,...,8, with
initial point yo=(1/4,3/9:

...,—2027,- 649,- 203,- 61,- 17,- 8,—- 211,
-3,-1,13,103,341,1151,3517,10 679, ... .

The subsequence is centered around the value 1, denoted
bold, corresponding to the initial point. The differences
—q lacks the most important aspect of age, namely its linea
ity. We can obtain the latter by defining the age as

7=sgr(s- g)log,(|s-q)) (20)

r_

corresponding points on different trajectories can have
slightly different ages.
® These reasonings demonstrate that in a microscopically
described system of GBM, the age of any point can be found
in an unambiguous way and with reasonable precision; see
Fig 8. It will increase in equal steps from past to future—
except the small neighborhood of the “present” state. This
age isabsolutein the sense that it does depend only on the
distance from the present, i.e., on the number of iteration
steps. This is due to the fact that coordinates of points con-
tain “traces” of their evolution, which enable us, at least in
principle, to recover the iteration indéx from the coordi-
in : . - .
nates of arbitrary point. It is appropriate to stress here that
the case of the classical Baker m@p=2) is no exception to
this general rule.

The described approach to age might seem extremely ar-
tificial, but it can be viewed, nevertheless, as representing
what may be called “microscopic” age. Of course, one

and skipping eventudhnd rarg zeros for which this expres- should not overemphasize this model description, but neither
sion is not defined. In such a way, we get a really veryshould it be underestimated. In my view, it demonstrates—
precise approximation to linear age—a result which can beogether with the above-mentioned behavior of cycles, illus-
understood by noticing thd,, alwaysmapss— ws, whereas trated in Fig. 7—that there is, at leagtalitatively, a differ-

q either remains unchanged g (w-1)g. Then fory, we  ence between past and future already at the microscopic
have on average—q=~wX—(w-1)** for k>0. The log, of  level. This then implies the existence of the property of the
the latter approaches, with growitg the value ofk+const  system, which | would calimicroscopic irreversibility

with very high precision. The above samg$ibsequence is If we now consider the evolution of a set &f points
then transformed into the following one: under the action oB,, the above reasonings will apply to
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FIG. 10. Section across the distribution functi@ﬁgEngﬁo,
with the initial functiongy(x,y) =1, by a plane perpendicular to the
X axis. The maximum value igs(0,y)=32.

tion function with the help of the functiof(xy,y), represent-
ing a section acrosix,y) by a plane perpendicular to thxe
axis, going through arbitrary poing, see Fig. 10. For such a
function of one variable, a variation on the unit interval is
defined as the supremum,

Vy(f) = sup, [f(%o,Y)) = F(Xo,Yj-D|, (21)
j=1

FIG. 9. Two states in the evolution of a distribution function t@ken over all possible dissections of the intervalrby 1
(under the mappings), the present state of which is defined as POINts. We can regard this expression as an acceptable ap-
constant on the unit square. proximation of the variation of the distribution function

along they axis.

any point of the set. We could therefore—at least in !N quite a similar way, one can characterize feestlimit
principle—define in any evolutionary trajectory of the set thePehavior of any distribution function with the help of the
“age” as the average of ages of all individual points. ThevariationV,(f) of the functionf(x,yo), representing a section
“present” state would then be the one with thgeragelage ~ 90ing through arbitrary pointy,. The difference V,(f)
closest to zero. = V,(f) of variations along andx will then grow steadily for
However, looking at the set without the knowledge of then from — to +, and we can use it to estimate the “age” of
coordinates of individual points, it is possible to know its the state, similarly as we used the difference of denominators
“age” also by observing its shape. Specifically, in the case ofn the case of a single point.
a subset ofE having a simple boundar{e.g., the case of This then gives us the general picture of the evolution of
points lying within a small squajyethe B,—causing the a distribution function under the action of the mBp. The
growth of the fractional expression of coordinates of all theabsolute value of its variation will grow indefinitely fon|
points—uwill cause also the “distortion” of the boundary. This — , attaining somewhere in between its minimum. Choos-
then means that such distortion is commensurate with the ageg one of the states having low variation for the “present”
of the set. To make this idea more definite, we turn to thestate and denoting the corresponding iteration indexkby
distribution functions orE, giving the density(of probabil- =0, we will again introduce what may be called the “age”
ity) of points inE. of the system in question. We could also go a bit further and
The map defined by, on E will translate in a straight- make this age linear by taking the logarithm of the difference
forward way into the evolution of distribution functions hav- of variations, similarly as in the case of a single point. Such
ing E as their support. The distribution function, constant onan age would then be mathematically well defined every-
a compact subset dE, will in the forward evolution ap- where, with the possible exception of the neighborhood of
proach a function independentxfand in the backward one, the “initial” distribution function.
independent of (see Fig. 9. But even general distribution Let us note in passing that the distribution function that
functions will very quickly approach functions almost inde- evolved from the standard “testing” functiogy(x,y)=1
pendent ofx, or y. That is why one can characterize, with will have the future maximum valugfor w>2) close to the
sufficient precision, théuture limit behavior of any distribu-  line y=0 and the minimum ones close to the liyel. After

016115-8



IRREVERSIBILITY IN A SIMPLE REVERSIBLE MODEL PHYSICAL REVIEW E71, 016115(2005

n iterations, the values will béw—1)" and(w-1)"", respec- possible in principle, such simplification would last only for

tively. This can be readily seen by taking into account thai@ finite number of iterations—until the coordinates would

the aregw~—1)/w to the left of the dividing line is contracted become relatively simple (the state would become

by the action ofB,, to the area 1w, i.e., by the factor ofv  “Present). However, to preparab initio a point close to the

~1. In a similar way, one will understand the behavior of ther®Pellor, i.e., a point with specific and thus very complicated

minimum. coordinates, means to prepare an exceptional point, and this
The ratio of the maximum to the minimum value is then IS €ssentially more difficult than to generate a point at ran-

(W=1)2", which becomes—fow>2—a huge number after dom. | propose to call this state of affairs, in the given con-

just a few iterations. This illustrates very well the growing text, microscopic irreversibility

. ; S . . It is evidently possible to prepare such a point, even nu-
thrg&genelty of the distribution functions under the aCt'OnmericaIIy, only by choosing a poing, letting it evolve to the

point By, and at last inverting the latter. The poifBt y,,
having the age of k iterations, would then approach, under
VI. THE PROBLEM OF IRREVERSIBILITY the action ofB,,, the pointTy, and the coordinates of its
iterations would be simplified. But it is not possible to find a

Having introduced the notion adbsolute agen a way  general construction nor formula defining a set of such “old”
formally different from the one used by the Brussels schoolqints.

[16,17, but conceptually—as it seems—rather close toit, W From this point of view, the microscopic irreversibility is
are ready to explain the apparent contradiction between Mig|ated to substantially different requirements for preparation
croscopic reversibility and macroscopic irreversibility of of the present and past states, respectively. Evolution leaves
generalized Baker maps, or in other words, to explain theyaces” on the coordinates of the evolved point, and inverse
essence of the second law of thermodynamics as applied &,olution would require us, even in the case of a single point,
this simple model. _ o to reconstruct precisely its whole history. But nothing similar
The so-called “problem of irreversibility” is usually ex- s peing required to prepare the present state. This crucial
pressed in two distinct formulations: one concerns the evoasymmetry lies, in my opinion, at the root of the explanation
lution of a state prepared by an experimenter, the other apst jrreversibility [27]. One should not, however, forget that
plies to the observation of a system without any questionnjs situation is the result of chaotic properties of the evolu-
about its origin, i.e., of a system with an unknown past. Wejon induced by the maB,,. If the map did not lead to
are thus facing two questiongboth equivalent to the chaotic dynamics, there would be no tautology; nothing
Loschmidt objection which are being posed since the first \yould be self-evident in this sense.
explanation of the second law by Boltzmann in 1872: if both  \ve assumed that phase points have rational coordinates.
directions of evolution are microscopically equally possible,The considerations of the last two paragraphs hold, however,
then(a) why are we not able tpreparestates which would  equally for irrational coordinates. In particular, the fact re-
evolve in a direction “prohibited” by this law, arll) why do  mains that inversion of evolution would require us to recover
we neverobservesuch evolution in systems with an un- exactly its whole history. In this sense, the argument applies
known past? In the language of the absolute age, these qug-any coordinates.
tions reduce to the following ones: why are we not able to  Here we come to a variance with a traditional view of
prepare, nor to observe, states which belong todiséant  jrreversibility as formulated, e.g., by Bricmofit8]: “All the
paston the evolutionary trajectory of the system under confamiliar examples of irreversible behavior involve systems
sideration? with a large number of particldglegrees of freedomlif one
We will treat the two questions separately, because thgere to make a movie of the motion of one molecule, the
explanations will turn out to be different for the two cases.packward movie would look completely natural.” Certainly,
We will also treat separately two different approaches, corpjaying back the movie of aingle point moving under the
responding to microscopic and macroscopic descriptions. action of GBM, we would not be able to distinguish the
backward movie from the forward one. But why should the
VII. MICROSCOPIC IRREVERSIBILITY physical properties depend on our common way of observa-
tion or on our observational possibilities? And wHatite
number of points is sufficient to distinguish between forward
We have shown that if we choose a poiatith rational  and backward motion? Superimposing all the phase points of
coordinates in E in any way, the coordinates of its future the trajectory of a single particle onto one frame, as in Fig. 3,
and past iterations will be almost alwagise., with the ex- we would be able to make the distinction between the past
ception of zero measure of poihtsrore complex than the and the future, between impossible and natural.
present ones. The claim that we can prepare only absolutely The simple model system &f noninteracting particles in
“present” points will then become actually a self-evident-  a rectangular bok19] shows that a large number of particles
tology, stating that we can prepare “simple” coordinatesalone is not sufficient for irreversibility. The arguments of
more easily than the “complex” ones. This tautology, how-this section support this line of thought in that the dynamics
ever, expresses exactly the essence of the problem. If wef some systems may bring about the unidirectionality of
would ask why it is not possible to prepare an “old” point, microscopic evolution, manifesting itself in the appearance
the coordinates of which would become simpler in the fu-of attractors(and repellors Observing then systems &f
ture, we could first of all point out that if that were even particles in the usual way, the inherent microscopic irrevers-

A. Irreversibility in the evolution of a single point
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ibility becomes more and more pronounced with growig 17

but it is present in the system all the time. 1 n=15
Moreover, the approach connecting irreversibility with a ]

large number of particles is not straightforward either: it re- 0.8

quires, e.g., the thermodynamic linfit—  to obtain irre-
versibility. For further details, see, e.§20], giving a nice
treatment of the difference between chaotic and irreversible
behavior of Hamiltonian systems. y
It might be appropriate to mention at this point the
Poincaré recurrence theorem, stating that any isolated, lo-
cally measure-preserving system will eventually return close
to any of its previous states. Approach to an attractor, an
object dense irE, has such a recurrent property. But the
property ofbeing closen phase space does not mean being
of a similar age in an arbitrary close neighborhood of any .
point, there can be points of any age. The mixing property of 0.2 0.4 0.6 0.8 1
B,, implies that the distance in the sense of metrics does not
imply the distance in time, norice versaIn this sense, the

064 ..

recurrence does not contradict irreversibility. 1
n=0
B. Irreversibility in the evolution of many points 0.8

The analysis of the behavior of a single point may be of
interest on its own, but the essential properties of the model 061
are seen much better when observing the action of GBM on
a set of points. y

The initial state can be, in the case of GBM, prepared 0.4
essentially by defining a subset Bfand filling it uniformly
with random pointgor according to an appropriate distribu- \
tion function. The evolution of such a set can be observed in 0.2
the author’s animatioh28], where the subset can be chosen
as a rectangle. Watching the evolution, one can see that ‘
points contained originally in the bounded subset will in the 0 oz o 06 e ]

future get into a growing number of horizontal stripes, and in
the past into vertical ones. Going from the past to the future,
they will pass through the “present” subset. This situation is
depicted also in Fig. 11.

Consider a sef)_, of N points from which a sef), n=-15
located within a small square, will evolve afteiterations. '

The greater the, the closerQ)_, is, in the usual sense of 0-87
metrics, to a sef), of points randomly distributed ovéthe S
repellor in E. However, irrespective of how close the latter 1 ™,

; ) . : 0.6 -
two sets become, their future behavior will be essentially
different. After k iterations, the first will becomd),, the y
second will look like the attractor. 0.41

The first question pertaining to the second law can be
formulated in this case as asking why it is not possible to
preparea state corresponding to a distant past. To answer it, 0.2-
it is sufficient to note that the evolution of a set of points,
although being reversible, does not offer an equal possibility
for preparation of all initial states. Present states—e.g., 0 07 0z
points filling the small square iB—can be prepared without : ) Ty
the slightest problems, but to prepare a statgeps before
would require localization of points in"2sertical stripes of
E, and in every stripe with different, and well specified, den- FIG. 11. Three states in evolutigwith w=4) of an initial set of
sity (cf. Fig. 10. How impossible this is can be best under- 2500 randomly chosen phase points, concentrated in the square sub-
stood when we realize that this task is equivalent to the onget of E. We are readily able to distinguish between the past, the

of preventingthe occurrence of points in the complementaryPresent, and the future. The projections of points on the diagonal
subset. y=1-x represent an analogy to the positions of physical particles.
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Then the answer to the above question is that preparatic 157~ - -« =w=rmem—- - ‘
of past states would require us to create them according to
distribution function with wild variation, which ipractically
impossible. Moreover, this function is extremely close to the 107
other one, obtained by averaging of the former, and descrit S .
ing a readily preparable present state. So the preparatic 5] o s -
would have to be, in addition, extremely precise. Here agait —— -
we see the crucial role of a sensitive dependence on initia?? | -
conditions, since two distribution functions, differing “mac- S
roscopically” only slightly, have an essentially different fu-
ture. 4 i i ———— e o——s 4 —— {2 o i

The second question, why we do raliservestates typi-  -54 - --
cal for the distant past, can also be answered easily: we ¢ | . . .0 000
not observe them because any such state quickly becom |
“present” or future, and observation means that we arc101 - - - :

0.2 0.4 0.6 0.8 1

watching a system with an unknown past without influencing o
it. projection
VIII. MACROSCOPIC IRREVERSIBILITY FIG. 12. The projection of evolution depicted in Flg 11 onto the

second diagondkcaled to unity length Only 500 points were used

Let us find out now what we can learn about GBM if we to make the structure visible. The left-hand side of the line corre-
want to consider it as a model of a physical system, exhibitsponds to the poin0, 1) in E. We are evidently not able to distin-
ing the difference between microscopic and macroscopic beguish between the past and the future of the projected set, but we
havior. The difference derives typically from the distinction readily see the difference between both on the one hand, and the
between the full description in phase space and various répresent” on the other.
duced descriptions. In the case of GBM, the unit square
can be viewed as the phase space of one paiitdaoted We can now answer the two questions posed traditionally
usually as theu space, and any set of points in it as the with respect to the second law. We already know that we
complete description of a state of a 1D system of nonintercannotpreparemicroscopically the “past” state because this
acting particles. If we want to use the model to illustrate theis practically impossible. But the macroscopic preparation
micro/macro dichotomy, we have to find a counterpart to theoffers still fewer possibilities, since in this case we can “as-
less complete description. sign” only positions to particles, but not “momenta.” If we

We depart from the inversion operat®r the effect of were even somehow able to create some specific arrange-
which is analogous to the inversion of momenta in classicament of points on the diagonal, we would know nothing
mechanics. If the GBM has to resemble, at least remotelyabout their “momenta,” so the latter would be necessarily
the dynamics of 1D gas, then the particle position should beandom, and consequently the phase points would not be on
represented by a variable which is an invariantTofThe  the repellor. This explains why it is not possible to prepare
projection of points inE onto the “second” diagonaly=1  macroscopically a state which would evolve contrary to the
-X, has this property and we therefore assume that it represecond law, and it seems to be the full explanation.
sents positions. The projection of the attractor looks like a We cannotobserveevolution going from the repellor to
stationary(nonequilibrium distribution of points, which can the present state for different reasons. First, any observation
be called the limit state” Due to the symmetry with respect of a closed(isolated or thermostatt@¢dystem has finite du-
to the diagonal, the projection of the repellor will lkenti-  ration. If we regard the trajectory generated B{}/as a se-
cal to that of the attractor. The orthogonal projection of aquence of states with amboundedast and future, then the
point in E onto the “first” diagonaly=Xx, could be viewed, probability of observing angpecificfinite sequence of states
with certain reservation, as the “momentum” of a particle. is zero. The observation of the present state is by definition

The “macroscopic” behavior of the system of particles isspecific and finite, so the probability to find it at rand¢om
then described by what can be seen on the second diagorelrandomly chosen trajectorys vanishingly small. But the
(see Fig. 12 There we no longer observe the approach to therobability of picking atarbitrary interval with exclusively
attractor, nor departure from the repellor. In the directionpast stategon the repelloris the same as that of seeing one
from present to future, we see only the change of the inhowith exclusively future stategon the attractor—i.e., 1/2.
mogeneous distribution of positions into the time- However, we cannot distinguish macroscopically between
independent limit state. In the direction from past to presentthe past and the future states. This explains why we are not
we see the opposite change of the almost homogeri@eous  able to know that we have seen a system in the past even if
equilibrium state into the inhomogeneous present one. Morat would be there. This holds even under the assumption that
over, we are not able to distinguish between the past and th&/stems can exist under unchanged outer conditions indefi-
future due to the attractor/repellor symmetry. The transitiomitely.
from past to present contradicts the second law for a gas on But the trajectories of closed systems do not have un-
a line; the transition from present to future is in accordbounded past. In the finitely remote past, a state “came into
with it. existence” as a result of interaction of the system with the
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surroundings, and afterwards its boundary conditions rerational x coordinate, differing from those of the attractor/
mained unchanged. That “first” state was actually therepellor ones, lie on trajectories approaching cycles. This can
“present” one, and from the moment of its appearance th&e understood considering that tBgreduces in this specific
system tends to the attractor. Therefore, the unbounded pagase tox—2xmod 1 and the condition of @ cycle, Bfx

of the presently observed state is actually an illusion: fron=X, then has a unique solution for any ratiomall he attrac-

the existence of the present state we easumethe exis- tor is therefore approached only by points with irratioral
tence of the past states, we can even in principle recaptu@ordinates, and as the former is uniformly densé,jrthis
them, but the mere existence of the present state does nBghavior can be understood as a chaotic approach to homo-

guarantee the real existence of past states on the repell@€N€0US coverage & But the approach to very long cycles

Thus we can find the system always only in the future, apls indistinguishable from the approach to a homogeneous

proaching the attractor. This explains the second law in thggﬂ?g%fi;gﬁ ?Lsgthem?s#omé (l);tttr:ge_‘f_tﬁg?s Vl\gg; :yat;{g)enrsl-
form stating the properties of observed states, because it dB¢ : ppre . ' ypi .
scribes the behavior of a svstem with an unknown past able behavior of all points—rational and irrational—will
. y S Past.  then look like chaotization, or an approach to equilibrium.
This leads us to formulate the macroscopic irreversibility

. ) . Accepting the terminology according to which the attrac-
of the GBM as meaning that the evolution of this systemy, epelio exists even in the classical Baker map, being

approaches an attractor, and if it would be possible to recovesyy «invisible” there, we can formulate the obtained results
its evolution from the past, the system would depart from th&y, 3 ynified manner, treating the classical Baker map, carica-
repellor. Such formulation is not subject to the Loschmldtturing an isolated system approaching equilibrium, in the

paradox; itis free of any seeming contradictions. In my view,same way as thermostatted systems approaching nonequilib-
these are sufficient reasons to accept it. However, to do thigjym steady states.

we have first to take into account that the usual statement of The notion of absolute age has the same meaningvfor

irreversibility applies to conservativéisolated systems -3 a5 forw>2. The present states are defined by simple
which should be simulated b,—the classical Baker map. cqordinates, and the present distribution functions have small
variation. One can tell the difference between past and future

IX. THE CASE OF THE CLASSICAL BAKER MAP in the evolution of a point, and choosing an inhomogeneous

. . . .. initial (presenkdistribution function, one can distinguish mi-
In the previous reasonings, we were dealing mostly with .

. croscopically between past and future not only by absolute
the full interval of parameter valuesy>1. However, the

specific case ofv=2, corresponding to the classical Baker age but also by predominantly vertical or horizontal stripes

. of maxima, respectively—at least in the initial stages of evo-
map, does not share all general properties stated above, anﬂion not too far from the present states

the question therefore arises as to which of the properties do Absolute age is essential, in my view, for the explanation

not carry over to this specific case and what consequences irreversibility. What was told about it above applies
this may have.

equally to the specific case @f=2 and supports the view
The attractor O.f the_GBMk reduces, far=2, to the set of that what makes the difference between reversibility and ir-
horizontal lines withy,,=c;/2%, wherek denotes the genera-

tion number and; < 2€ is an integer. Similarly, the repellor reversibility is actually observabilitymacroscopidrrevers-

: . . . ibility is observable, whereasiicroscopicis not—it is hid-
becomes the set of vertical lines wikhcoordinates of the . .
ok : . den for macroscopic methods of observation. In the case of
same typexy=c;/2*. Speaking mathematically, these sets

. w=2, it is hidden also for microscopic methods. Only the
represent an attractor/repellor pair as wste, e.g.[15], p. lizati 5 is abl discl . - ;
82). therefore we will continue to denote them so generalization tov#2 is able to disclose its microscopic

’ . : . ) . existence. And that was the reason for the study of the gen-
From the physical point of view, however, those objects

: . . ralization of locally measure-preserving maps.
are usually considered irrelevant, since they are not y b 9 b

X ; . ; In this context, we should not leave unnoticed the Zer-
strange” All dimensions (3) of the attractor and repellor . . .

melo paradox, relying on the Poincaré recurrence theorem.
namely reduce to 2, so that the latter &w@mogeneouand

consequently do not represent readily “visible” objects.Accordmg to it, even if a nonequilibrium state of &olated

Moreover. the sum of Lvapunoyv exponents system evolves to equilibrium, it must eventually return
' yap P close to the initial state, thus violating the second law. This

-w means, as applied B8, that a system of points, starting, e.g.,
In(w-1), (22)  in a small subset c&, will eventually return close to it. Apart
from the standard reply that the recurrence time is enor-
which should be negative for strange attractors, becomesously long, the model oB, enables us to give further
now zero, which means that the measure of subseisief refutation of the objection. Since all rational points approach
not being contracted und@&,. Such a homogeneous attrac- cycles, such recurrent behavior, albeit not excluded, would
tor, nevertheless, “attracts” the points iteratedByyin the  be possible only for extremely exceptional sets. Choosing
important sense that the iterates visit the neighborhood afiamely the same denominatorytoordinates of all points,
any point ofE with equal probability. one obtains—as a rule—the sets “condensing” on a limited
Returning now for a while to cycles, we have observednumber of points irE. However, it is not too difficult to find
that the number of periodic orbits containing points with aalso points which will approach periodically moving sets.
denominator not exceeding a given numlgegrows with  This confirms the existence of recurrences, but also demon-
falling w=2, until in the case ofw=2 all points with a strates how rare and physically irrelevant they g28]. In

2
)\1+)\2:
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this sense, the recurrence does not contradict the formulatidiact that we are readily able to impose macroscopic con-

of the second law about the arrow of time pointialy the  straints on positions, but we are not able to do the s@mnat

time from the past to the future. least not to a comparable extgntith momenta. This dra-
matically reduces our ability to influence the states of physi-
cal systems, thus leading to apparent irreversibility.

X. FROM THE SIMPLE MODEL TO REAL-WORLD In this sense, the GBM manifests features which coincide

PHYSICS with the general properties of e.g., rarefied real gases, as
. . . regards the global behavior in the distant past and future—as
| believe that the model of the generalized Baker map '?argas the in?errelation between reversibili?y and irreversibil-
interesting even in itself. However, it was studied with thejy, is concerned. The “mechanisms” by which irreversibility
hope that. its anaIyS|s will shed light on the properties Ofappears in reversible systems are common to GBM and
more realistic physical model systems. By the latter | meansirongly mixing models oN-particle systems. We may thus
mathematical mOde|S, the essential aSpeCtS of which m|m|§ay that GBM represents an appropriate_a|beit extreme|y
the properties of corresponding real physical objects. Let usimple—model, demonstrating essential aspects of interrela-
start, therefore, the concluding discussion by a reconsideraions between reversibility and irreversibility. The properties
tion of the basic assumptions used in the study of the genewhich became apparent in the study of GBM are therefore
alized Baker map. applicable to more realistic models, as follows.

All my numerical simulations were restricted to rational In real experiments, we prepare a state by some manipu-
coordinates. The reason was to circumvent artificial irreverslations with particles. The mathematical counterpart of such
ibility, which would otherwise appear as a humerical artifactpreparation is the localization of phase paintof a realistic
due to rounding errors. Rational numbers are a dense subsgtstem in its phase space. The evolution of the state then
in the field of real numbers, and almost everything men+esults from physical laws and ispresenteds the action of
tioned above for rational coordinates of points will apply to mathematical operat@,. Whatever the physical preparation
real ones as well. There is actually only one major problenof a state may be, the localization will always result in a set
which the exclusive use of rational numbers could cause if numbers having absolute precision. Of course, we do not
our study: the absence of periodic orbits for trajectories conknow any state with infinite precision, but from the view-
taining points with irrational coordinates. This to me doespoint of classical mechanics, any stateistbe absolutely
not seem to be an essential problem, if we are aware of it. preciseper se Application to wg of S, simulating relevant

Many “realistic” (in the above sengeN-particle model physical law, yields absolutely precise numerical results for
systems(e.g., dilute gas models with Lennard-Jof2s] or  «;, for any value oft>0, provided the system is determin-
hard-spherg22] potentia) share a sensitive dependence onistic.
initial conditions with GBM. B, is known to be strongly As far as GBM is concerned, one can obsedia@a moni-
mixing [14] and the same is confirmed for many classicaltor) even evolution going from the repellor—i.e., from the
systems[23]. The mixing property is a consequence of distant past—to the present. Such evolution will take only a
Lyapunov instability, discovered in many interesting modelsfinite number of iteration steps: after reaching, the point
[22]. The evolution of systems with this property leads towill move (forevep to the attractor. However, we cannot re-
local contractivity of phase volum@neasurgin the forward  construct past evolution in real physical experiments, since
direction of time(implying the opposite when tracking the we cannot prepare a state corresponding to the precise local-
evolution backwards or to uniform coverage of phase spaceization of the poinfTw,. A notable exception is provided by
by the trajectory. Approach to an attractor in GBM is thenexperimental manipulations such as those used in spin-echo
analogous, in these more realistic systems, to approach toexperiments[24], mimicked in numerical experiments by
nonequilibrium steady state, or to equilibrium. mathematical reversal of future states. However, due to the

The notion of absolute age enables us to view the past argensitive dependence @, on w,, the slightest deviation
the future as related t@strange or homogenegueepellors  from the exact value oTw, would cause a completely dif-
and attractors—the structures in phase space, defining tHerent trajectory.
arrow of time. The age, as introduced here, relies on the The same applies to the preparation of states according to
property ofB,,, that the two coordinates of phase points be-a distribution function. In both cases, we prepare states and
have differently undeB,,. It is evident that this results from functions which are “present” and we are not able to prepare
different contractivity of the map in different directions. We “past” states nor functions, which would eventually evolve
can therefore expect some signs of the absolute age in dhto the present ones. Our possibilities to prepare states of
systems with strange or homogeneous attractors. physical systems are rather crudely restricted to states which

We pointed to the different role of positions and momentaare in the absolute sense “present.”
in the transition to macroscopic description. The momenta In my view, this explains the seeming contradiction be-
are responsible for the microscopic difference between pastveen microscopic reversibility and macroscopic irreversibil-
and future steady states, but they do not help us in theiity as rooted already at the microscopic level. Or still in other
macroscopic identification. This state of affairs lies at thewords, the problem of irreversibility hagimarily nothing to
basis of macroscopic indiscernibility between past and futurelo with the micro/macro dichotomy. It is connected to the
and thus supports our view that macroscopic description ipast/future dichotomy instead, manifesting itself in the asym-
intimately connected to the loss of information about themetry of the preparation of states close to the repellor/
system under considerati8]. This may best be seen in the attractor. The macroscopic level just adds a further restric-
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tion, consisting in our impossibility to observe or practically namics of which has an attractor/repellor p@isible or hid-
influence momenta of particles. den. The second law of thermodynamics for such systems

The view presented in this paper may seem to contradiatan then be explained in the same way as the unique direc-
the orthodox approach, stressing the role of a large numbeion of evolution in GBM. Namely, it can be regarded as a
of particles in obtaining macroscopic physical behavior, buttonsequence of the dynamics which—if they continue to en-
this role is, actually, not disputed here, it is just not given thecompass the past—would lead from the past repellor to the
utmost significance. One certainly recognizes that the possfuture attractor. The observed properties of the systems then
bility to prepare a “past” state depends crucially also on howesult from this simple symmetry. Macroscopic observation
large the system is. Moreover, what is claimed, e.g[20, of systems—the sole viewpoint available to us—hides this
is that “the equality between the physical entropy productiorfundamental microscopic property and causes a series of
and the dynamical phase space contraction rates of Hamiseeming contradictions between the two directions of time.
tonian thermostatted systems only holds for macroscopiéccepting this standpoint, we can claim that there is no real
systems.” Restricting the scope of the paper to the investigaproblem” with the law and that the objections posed against
tion of irreversibility only, such arguments do not apply to it. it (including the classical ones of Loschmidt and Zermelo
are simply the results of misunderstanding.

| think that the described model essentially explains the
origin of observedmacroscopigirreversibility in unobserv-

We have analyzed the parametrized set of generalizedbly (microscopically time-reversible systems. The ob-
Baker maps as simple models of time-reversible evolutionserved macroscopic irreversibility is actually reversibie
exhibiting signs of irreversibility. The analysis has shownprinciple, or the microscopic reversibility is observationally
that it is possible to define past, present, and future states argeversible. The driving force of such behavior is a sensitive
distribution functions on the definition domain of the map. dependence of the evolution on initial conditions, which rep-
The question about the origin of the preferred orientation ofesents the hallmark of chaos.
evolution—the arrow of time—can then be answered by stat-
ing that it is rooted in contractivity of the map: the latter
produces a unique direction of evolution which can be The final stage in the preparation of the paper has profited
brought into relation with the arrow. This applies equally tomuch from the discussions with William G. Hoover and
the measure-preserving classical Baker map. Harald A. Posch. This work was partly supported by the

In an effort to view the map as a model—albeit a very Scientific Grant AgencyVEGA) of the Slovak Academy of
crude one—of real systems, and to apply the results of th&cience and Ministry of Education of the Slovak Republic
model to them, one sees that a kind of correspondence can bader the Grant No. 1/0428/03. The support is herewith
established between GBM and macroscopic systems, the dgreatly acknowledged.

XI. CONCLUSIONS
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